-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHomework 16.10.nb
2460 lines (2427 loc) · 124 KB
/
Homework 16.10.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 126779, 2451]
NotebookOptionsPosition[ 125490, 2406]
NotebookOutlinePosition[ 125844, 2422]
CellTagsIndexPosition[ 125801, 2419]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["Charles Rambo", "Text",
CellChangeTimes->{{3.721192288812705*^9, 3.7211922943244123`*^9}},
TextAlignment->Right],
Cell[CellGroupData[{
Cell["Homework 16.10", "Title",
CellChangeTimes->{{3.717716726522892*^9, 3.717716730345537*^9}, {
3.721192198918841*^9, 3.721192209566236*^9}}],
Cell[CellGroupData[{
Cell["5.36", "Subsubsection",
CellChangeTimes->{{3.721192370940015*^9, 3.721192371626686*^9}}],
Cell["\<\
[Computer] Consider a cart on a spring with natural frequency \[Omega]o= 2\
\[Pi], which is released from rest at xo= 1 and t = 0. Using appropriate \
graphing software, plot the position x (t) for 0 < t < 2 and for damping \
constants ,\[Beta] = 0, 1, 2, 4, 6, 2\[Pi], 10, and 20. [Remember that x(t) \
is given by different formulas for \[Beta] < \[Omega]0, \[Beta]= \[Omega]0, \
and /3 > cool\
\>", "Text",
CellChangeTimes->{
3.721192411893235*^9, {3.721193060379027*^9, 3.721193191129863*^9}, {
3.721225222868408*^9, 3.721225224228471*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"\[Omega]0", "=",
RowBox[{"2", "*", "\[Pi]"}]}], "\[IndentingNewLine]",
RowBox[{"v0", "=", "0"}], "\[IndentingNewLine]",
RowBox[{"x0", "=", "1"}], "\[IndentingNewLine]",
RowBox[{"t0", "=", "0"}], "\[IndentingNewLine]",
RowBox[{"tf", "=", "2"}], "\[IndentingNewLine]",
RowBox[{"\[Beta]a", "=", "0"}], "\[IndentingNewLine]",
RowBox[{"\[Beta]b", "=", "1"}], "\[IndentingNewLine]",
RowBox[{"\[Beta]c", "=", "2"}], "\[IndentingNewLine]",
RowBox[{"\[Beta]d", "=", "4"}], "\[IndentingNewLine]",
RowBox[{"\[Beta]e", "=", "6"}], "\[IndentingNewLine]",
RowBox[{"\[Beta]f", "=",
RowBox[{"2", "*", "\[Pi]"}]}], "\[IndentingNewLine]",
RowBox[{"\[Beta]g", "=", "10"}], "\[IndentingNewLine]",
RowBox[{"\[Beta]h", "=", "20"}], "\[IndentingNewLine]",
RowBox[{" ",
RowBox[{"\[Omega]a", "=",
SqrtBox[
RowBox[{
SuperscriptBox["\[Omega]0", "2"], "-",
SuperscriptBox["\[Beta]a", "2"]}]]}]}], "\[IndentingNewLine]",
RowBox[{"\[Omega]b", "=",
SqrtBox[
RowBox[{
SuperscriptBox["\[Omega]0", "2"], "-",
SuperscriptBox["\[Beta]b", "2"]}]]}], "\[IndentingNewLine]",
RowBox[{"\[Omega]c", "=",
SqrtBox[
RowBox[{
SuperscriptBox["\[Omega]0", "2"], "-",
SuperscriptBox["\[Beta]c", "2"]}]]}]}], "Input",
CellChangeTimes->{{3.717716884321001*^9, 3.717716888367694*^9}, {
3.717716931935367*^9, 3.7177171224209347`*^9}, {3.71771716307642*^9,
3.717717373409856*^9}, {3.717717915673019*^9, 3.717717916658984*^9}, {
3.717718606844409*^9, 3.717718779864048*^9}, {3.721192430382452*^9,
3.721192486177587*^9}, {3.721192517683156*^9, 3.721192530856853*^9}, {
3.7211925679400663`*^9, 3.721192657488702*^9}, {3.721225046459627*^9,
3.7212252020380163`*^9}, {3.721225693716593*^9, 3.721225742034253*^9}, {
3.721225813628044*^9, 3.721225830248602*^9}, {3.721225870538475*^9,
3.721225878226519*^9}, {3.721227732931404*^9, 3.7212277512571497`*^9}, {
3.721227849267304*^9, 3.721227894186554*^9}, {3.721228300191147*^9,
3.721228313958168*^9}, {3.721228758247013*^9, 3.721228762720334*^9}, {
3.721231067317284*^9, 3.721231068716722*^9}}],
Cell[BoxData[
RowBox[{"2", " ", "\[Pi]"}]], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.721231120663746*^9}}],
Cell[BoxData["0"], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.7212311206727858`*^9}}],
Cell[BoxData["1"], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.721231120678933*^9}}],
Cell[BoxData["0"], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.721231120685421*^9}}],
Cell[BoxData["2"], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.72123112069061*^9}}],
Cell[BoxData["0"], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.721231120696707*^9}}],
Cell[BoxData["1"], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.721231120702915*^9}}],
Cell[BoxData["2"], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.721231120709177*^9}}],
Cell[BoxData["4"], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.7212311207153263`*^9}}],
Cell[BoxData["6"], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.721231120721416*^9}}],
Cell[BoxData[
RowBox[{"2", " ", "\[Pi]"}]], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.721231120727502*^9}}],
Cell[BoxData["10"], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.721231120733884*^9}}],
Cell[BoxData["20"], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.7212311207400503`*^9}}],
Cell[BoxData[
RowBox[{"2", " ", "\[Pi]"}]], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.721231120746056*^9}}],
Cell[BoxData[
SqrtBox[
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Pi]", "2"]}]}]]], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.7212311207543583`*^9}}],
Cell[BoxData[
SqrtBox[
RowBox[{
RowBox[{"-", "4"}], "+",
RowBox[{"4", " ",
SuperscriptBox["\[Pi]", "2"]}]}]]], "Output",
CellChangeTimes->{
3.717716977815131*^9, 3.717717383390935*^9, 3.717717917476946*^9,
3.717718744639502*^9, 3.717718780731779*^9, {3.721192596655807*^9,
3.721192606918585*^9}, 3.7211926589406977`*^9, 3.7212255310913553`*^9,
3.7212277523751707`*^9, 3.72122789706658*^9, {3.7212310965886183`*^9,
3.721231120763297*^9}}]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"xa", "[", "t_", "]"}], " ", ":=", " ",
RowBox[{"x0", "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[Beta]a"}], "*", "t"}], "]"}], "*",
RowBox[{"Cos", "[",
RowBox[{"\[Omega]a", "*", "t"}], " ", "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"xb", "[", "t_", "]"}], " ", ":=", " ",
RowBox[{"x0", "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[Beta]b"}], "*", "t"}], "]"}], "*",
RowBox[{"Cos", "[",
RowBox[{"\[Omega]b", "*", "t"}], " ", "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"xc", "[", "t_", "]"}], " ", ":=", " ",
RowBox[{"x0", "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[Beta]c"}], "*", "t"}], "]"}], "*",
RowBox[{"Cos", "[",
RowBox[{"\[Omega]c", "*", "t"}], " ", "]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"xd", "[", "t_", "]"}], " ", ":=", " ",
RowBox[{
RowBox[{
RowBox[{"(",
FractionBox[
RowBox[{"\[Beta]d", "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]d", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}],
RowBox[{"2", "\[Beta]d"}]], ")"}], "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{"\[Beta]d", "-",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]d", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}], ")"}]}], "*", "t"}],
"]"}]}], "+",
RowBox[{
RowBox[{"(",
FractionBox[
RowBox[{"\[Beta]d", "-",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]d", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}],
RowBox[{"2", "\[Beta]d"}]], ")"}], "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{"\[Beta]d", "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]d", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}], ")"}]}], "*", "t"}],
"]"}]}]}]}],
RowBox[{"(*",
RowBox[{
RowBox[{"tried", " ", "NDSolve"}], ",", " ",
RowBox[{
"but", " ", "had", " ", "to", " ", "do", " ", "this", " ", "on", " ",
"paper"}]}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"xe", "[", "t_", "]"}], " ", ":=", " ",
RowBox[{
RowBox[{
RowBox[{"(",
FractionBox[
RowBox[{"\[Beta]e", "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]e", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}],
RowBox[{"2", "\[Beta]e"}]], ")"}], "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{"\[Beta]e", "-",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]e", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}], ")"}]}], "*", "t"}],
"]"}]}], "+",
RowBox[{
RowBox[{"(",
FractionBox[
RowBox[{"\[Beta]e", "-",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]e", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}],
RowBox[{"2", "\[Beta]e"}]], ")"}], "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{"\[Beta]e", "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]e", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}], ")"}]}], "*", "t"}],
"]"}]}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"xf", "[", "t_", "]"}], " ", ":=", " ",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[Beta]f"}], "*", "t"}], "]"}], "+",
RowBox[{"\[Beta]f", "*", "t", "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "\[Beta]f"}], "*", "t"}], "]"}]}]}]}], " ",
RowBox[{"(*",
RowBox[{"again", ",", " ",
RowBox[{"after", " ", "solving", " ", "for", " ", "constants"}], ",", " ",
RowBox[{
"I", " ", "feel", " ", "like", " ", "mathematica", " ", "could", " ",
"solve", " ", "that", " ", "for", " ", "us"}], ",", " ",
RowBox[{"but", "..."}]}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"xg", "[", "t_", "]"}], " ", ":=", " ",
RowBox[{
RowBox[{
RowBox[{"(",
FractionBox[
RowBox[{"\[Beta]g", "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]g", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}],
RowBox[{"2", "\[Beta]g"}]], ")"}], "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{"\[Beta]g", "-",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]g", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}], ")"}]}], "*", "t"}],
"]"}]}], "+",
RowBox[{
RowBox[{"(",
FractionBox[
RowBox[{"\[Beta]g", "-",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]g", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}],
RowBox[{"2", "\[Beta]g"}]], ")"}], "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{"\[Beta]g", "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]g", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}], ")"}]}], "*", "t"}],
"]"}]}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"xh", "[", "t_", "]"}], " ", ":=", " ",
RowBox[{
RowBox[{
RowBox[{"(",
FractionBox[
RowBox[{"\[Beta]h", "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]h", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}],
RowBox[{"2", "\[Beta]h"}]], ")"}], "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{"\[Beta]h", "-",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]h", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}], ")"}]}], "*", "t"}],
"]"}]}], "+",
RowBox[{
RowBox[{"(",
FractionBox[
RowBox[{"\[Beta]h", "-",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]h", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}],
RowBox[{"2", "\[Beta]h"}]], ")"}], "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{"\[Beta]h", "+",
SqrtBox[
RowBox[{
SuperscriptBox["\[Beta]h", "2"], "-",
SuperscriptBox["\[Omega]0", "2"]}]]}], ")"}]}], "*", "t"}],
"]"}]}]}]}]}], "Input",
CellChangeTimes->{{3.7212283334599133`*^9, 3.7212283398190737`*^9}, {
3.72122839445918*^9, 3.721228429290065*^9}, {3.721228504158141*^9,
3.721228522036152*^9}, {3.721228573348332*^9, 3.721228637729548*^9}, {
3.721228986377993*^9, 3.721228994761642*^9}, {3.721229084094455*^9,
3.7212291659193497`*^9}, 3.7212294129685097`*^9, {3.721229478055152*^9,
3.721229498974689*^9}, {3.7212299573004627`*^9, 3.721230366013307*^9}, {
3.7212306674658833`*^9, 3.721230703415408*^9}, {3.721230984349016*^9,
3.7212309868498583`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"xa", "[", "t", "]"}], ",",
RowBox[{"xb", "[", "t", "]"}], ",",
RowBox[{"xc", "[", "t", "]"}], ",",
RowBox[{"xd", "[", "t", "]"}], ",",
RowBox[{"xe", "[", "t", "]"}], ",",
RowBox[{"xf", "[", "t", "]"}], ",",
RowBox[{"xg", "[", "t", "]"}], ",",
RowBox[{"xh", "[", "t", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "t0", ",", "tf"}], "}"}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Detailed\>\""}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Full"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7212304333113747`*^9, 3.721230474713567*^9}, {
3.721230615905842*^9, 3.721230635366291*^9}}],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{}, {}, {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1mmk8VO/fx4WkUkqIkqWQLFE/JOSbFpWQPZWESAmRlCRFtEhCCNlKEQkh
SnHZCpXsS9aZsTMz19hmxjr3+T+458HM6z3LdT6f73bOdV4j43jN3Jmbi4vr
DfH0v1dD59Gm8jFnvc5lDvHAMJJj7dgvfgQESbvcGASLrm0LLxC3hL12Pz9V
EPy1LMDtlrwdqDO5m7wJ3r1f+F2SuBPU3VL6xUcw16axFxypKyCzMivJbxlD
E7U0yEHeA/yEVhk1LGEwu1j3xSHWC944j7XxEqzd+F9elPgNMBUR1d26iGHH
geSMqsSb4PLY857QAgaBLP6UGanbIOoznzo+h2FG1DtWLu0O9Pe3vE5jY+h9
0PvMWj4AArboPDjAwnCRnVZZZXkfCivDDL7MYujYfUbPNjYQpsoP0zbNYCh/
VaXxTDwY5uudJtwZGNSbfT/JnQuBSBFbAzc6hkz+3SpliQ/BXKbl6Ukqhiif
OFks9QTCezP6skcw8GUbpz5yCIXWzmDG7iEMfhRuCem0p+CzizQbSSGOf8p9
k5l8ONDHbIfmezB0hmx/PubyHII8cStXFwb5vqsrKywjIOkGpXKkHUOCsEzg
mdhIkNQRS7dpxPAg8KlvqHg0TCalDP2swFAmcanIuiQa5J7CjrZSDOzigzPb
z8VA0bFsv+qvGNzos9e+JcbCyat9Dw0+YbA8Z+9ClYqHpq8doZ3JGMKZ2u++
lMdDadMBAUY8htpIkYFghwRgMR1+jUZjOFD7y25b2iuglsRuCAgl9GloWJvI
J4PAkW1WWjcw2DcKRm+pSYYXW9cZnfXA8OrqeNOwSwqkZypknb+Mgb+pIR1Z
poJOiGkBvy0G/1Uh221iX4MifSCNoY/B6QYWfyL+FiIpNwrW8WP4jyfKL9/z
LRi0tXmncujAHaXe3V3zFvgKGN8FWXRIyb2duPvmO1gdl7sheIgOXeM8Uq3N
6aB74GNXdTkdTjmIyUqFZcLt/f0X8jzpIMkoCT4+kAk7PyglbrhEB2rA+SEv
7SwYMBvYYHKODqGJb9KrR7NATWC+1f4oHao7lHe5Hs0GnhkdxZHNdNA20d/9
eTkHYkvtk4OKaMDfOxDeZ5ULud8U737PpEHH1Yd41cdcOKbUebU1kQYl1c42
H1XyYElIpDA5iAY2lCxxrp48eDi26WWyEQ2itmkkvtPKByFH4/NnuqjAH33i
NWOyEARlH1xW652ABS3ywustn2GfoPnpq/UTQO/1tbY4/BmePL4TGlo6AS07
368tiv4McMZyySdpApK/8d28s68I+oQvdHDbToD6QJUh391iSLOOr+VuHQf7
vXozW/lL4K/c0wfCeWNg0dFmUq9WAissDb+xE8fAwN89M+BMCQRf8rxU9WQM
lH4m2pGzSmB3R85FgYtjwDyzUJtu/A0mV+WKXRMeg7DAL0l7XnyHojUDhY+v
j0Jx495jxyQRmEfu40mUGIHwMepxZQMELh+NJIb4RuASd4bhRg8EjuiNjNjk
MIiqbzXpLkWA2RVHdH8Mw7ffgVnFu8uh9bOmzj23Ydiq6vrp5N9yOO1/MZW7
eAi6ZrWR97pKKFK8tDtedxBsHvR0VT2tBssMnVubBMlw7ZO3StxMHXQ0UJSN
i5phKqK9dsWKBrhD3kaR5MuE2oqfqEG3GRQ9upmXB3+jK7dPrDtDbQVv+Zu3
oKwXZW3deN6O2QpRb28sM2Z7EbW0M/siVxvkkA48DFHpQx7cl408hNtAPEam
wjqxD914+vDpA9028LPg8Ef79qN7SVWrc8LaIM8+uuBdDAnFVBzg41Fph+b2
nAEpXQpqv7jSmn9fOxgnGBXPWlGQGF/9u3X67cC8O/P76zUKSjC0PSpm1Q7C
ZwotBdIoKLXFL1jlbjucSlpU6eQfQB+Girlt6tthznzoyWzjAKpYvZeT7d4B
a75MzSabDyEFS7XiUN8OsNJbL7LKbQhFJO++dvlBB7jfMmyxDhlC9v8p9e+I
74B73fwl2cVDaNlWFiVUd4DEEfYG1a3DSDtP9N7jrZ3wFrKO+PQOo0LrheWL
dZ2Qv2Gu7LjJKJJ4PVek39oJz/Y9l77mNIoeTLA8pPo7YTqdim77jSLz+zN9
XTOdUJ1RY6GTPooYmbQyM+l/QH59R9x9cRSpLPUHwK1/0LnrVLNP2hhKT6te
3iLXBT8T3Ox9u8eRZ4glGVS7wCspLqGMOo50XAarnPZ3gVr2Y+nxpXHUqMj7
JMe4C4Yef/rNkJpAc58Obzp0swu6VpBrSxwnkFF55c4rNV2wUzOC97+BCST6
xnxNeFMXdP/i1f45NYHIDyjU/O4uuF1+rvgANxXdPMadv4i74BB4Gv2TpqLU
v/q6EWLdUPDn9v4KWyqa7ik3Lb7SDU/tfY4ca6CisjLT/3q8u+HvmmkesV4q
epxKElkR0A0xm2nb/4xTkYQTV7dhVDe4nRU50beShgwmwLmvpBt+On8of69N
QwlzZbdXCvTAF8uU9b+Tacip28RWUbQHdtk8fPc7i4ZUS/v0Tkn3QGPHUENO
EQ1V31/miVfvAfp77jyJvzREW6UXrny+B+I86s7GLNDQQdHSNxY5PZDqW5bG
MKUj3hiRa0e/9ADlYIAD5Swd1W7y0NlX2QP6SuZqxU50dGqjVOuW9h6QM2rv
Xu1LR3YCgSspSz1gfuybq3kSHd3hPnrZ07gX9i84/7xMoSO9wCR1x9O9QC0L
c380TkfcXEwuS4de2EHrSXw8RUehS+nx+3x6Qa85wmcvN0ZxbP7fy4m9cLIp
8uAOaYyK6H9UnlF7YW3c1A5va4z83OXmA5i9MHq5iVVki5Ee9e5PT64+OKjJ
M9LjiNGPsd0XLIX7IM5tLVeDB0atgxERW3X74HJX0r2TIcT6F8ds1xn0EecZ
3YiUUIxsKfq7OKf6wDvZLaLtOUYD/VMVlIt9kH629ORIPEZTXZbTmU/74PhB
acXX2YSeMx/Rq5g+EL7it5f3E6Gnc2XYs5Q+EJeqX3niM0Yr2otkvQr6YL3X
3qVbpRhVWwpOOpb2wUd1X3HHCowet7iUWtb0gVWPxKTKD4w2NIlZa3X3Qe5l
+WrXP4TeU17bFYf6QOzQuy/dDRi9/FtH34r74BEuOru7BSPJP36PONz9oBDC
+8r3H0YUwxaLSYF+OBmn/59nD0bpdUrSA6L9INi9yf1EP0YqNT1ffir2g/Wr
LyWpgxiJ0q/SIjT6oeDDkxSLEYy4RBZkzh3sB9dTf4spYxiN64Ray53sh0Kv
DC4TKqHHUfwptuqHUGW7WzF0jMqevEdf7fsh7/dF8a8MjN7n7Zt5cLUfYhvM
Br9MYeS/bHVeLLAfiiVFqUZMjC7JDUVSnvZDyJNRWTILI1OjGz+zY/vha+Kr
ALM5jLS9eRZuvu6HRd4oVtI8RrIJUar62f2w45N1+M8FjNZXyDitLe6HtpZE
/d+LGLFH8uLaKvqBewg2ZC8R/tcfrE/50w/yaYfnLi9j9EejYYVrRz9cFW5d
WMEh8mVrp6lO6YeIR0c33yI49QHNdZnaD7nRwidrCQ7N8k+pZfVD/bbh2FmC
S0ZXup5YQYIjpx7NLxOs6m8cnMNHgtkUms8gwW8FY5I3CZDgfJPm6nSCxdN6
vvhuJIE7fl94mOBwTdmWXlESHDDN9y0l9PD8uko7JEGCqBdjVpsI9j1fsOq9
DAn+e7PO+Cihn8aYl1m3kwSbPq68YEH4cww+pHtdmQTGyuSwA4T/js2h1h17
SMDu7ejgIeJj9KHJU3cfCSqqT+inszEq1xN/+lqXBC7y6JcsEV+NZvt3fIdI
sCJ01OfeLEZZzu/R1WMk2FyUfKRomqifOfyv0YgEkTkUrbpJjF6E7ZvRMCeB
T36v5ReMEb/0vfWvTpMgYD854QENo7sFPxW4zpMgaPLSOqUJoh8M1h92diTB
228bcnNGMepxT7ql6k6CF3PSTw0HMDJbMRQZfZ0EDcLRvx1JGP2MVs6eu0WC
g6FHjp3uxSjv2zdSVRCh11VtubUdo+DVXSds4kjgu7usZUctRnOJMk6lSSQ4
rv7MWrIaIw+1KwHb00jwOt5MfRZhZHOanU/9SIJa7eebtIoxUn4nKhFYRYJz
p91oQm8xeq1lpzlcS4LnBbYtjGSi3v+8Mz35lwR3+eYPfCD6mWtaPUTkHwms
mwS+fg4n6vugBT2TTgIl++VZmVsYzacMJOVPE378Hnww9cJIhuNt/I1Nguwr
upn2Vwk9pdHZf7jJEJ/1Klr2AkartNtdsSgZHnJ3t+oexWh3/KUt7K1ksGpg
3biph5Elm1nHJUMmzkfM8Mh9RP0Vbd4lpESGddT3J912EfX/35kRdSDDjOSv
D4VrMbKPGos9cIQMJk2CffM8GD2avG1gcIIMrwTOVm1fpKPW3IR3py3I0DZf
/mMzlY7clXsu+rmQwUXx06OXv+goVe4CCT0ng33znVOzgXT0Mxg/r40mgwja
FnqWmNe0gXvQFE8G0yJlrjcedKT9JjWZkkYG67AP1R3EvG+RpNiu/EKG8l/7
y/v30BGfmPM/QxIZzv6qu+zaRUNua642t6lR4H34n7hiERpKLxUtMtSkAC/v
9vazq2io37MyHulQYOPoqooeNhWZd4g7ZBpQ4ONpTYp/NxVpva3F/rYUUGIY
qailUBGvnvw62ccUaO9er3udOH8mepGPXe+nwLXSq1HDayZQu+wzpZFBCsQY
1MUEsceRYKeWoO04BYrq/dI4Q+MoSC+i/egsBRxjFvcmlY+jy2vBWXztABwu
2hVw+cY4Un+XGFSuOQATo9EiFu1j6Hfn6dL14QOgaRnaJR48ioK6RkRcXwxA
RMWKJFePUaTVc8vjR9wALLeq26TajKK3/S+l/NMGQKrQRvyb8ijyH+4IHPsy
AHPBZM+8lhGkMnPaoHpgAD5mx+/MkxhBzwVtGm7vHwT3BGfF4ldDyMLAhjw4
OAh9WkeLOy0oqGTTnoaBsUEY2ViUK6xNQdvJq0sp9EH48tleEqQpaOrOtzgS
exDkuygVF6hkFPFJ0rRHYAjuPSrtbX5ARn8khspa1IdAIO79vdhcEjoy7ZVY
GTwEARM/ysOZvUgz9enpVNlhmLafEtNrbkek5Retl++NQOyE7Es1ja9o6ERD
mmjVKNiL57a1CldBXnz/7SaZcSCbHNlxjrcL3HZJdO3dOQ6BG7/fETrUBQpf
bbSjlcdhQpXvYfa9LkjpbJq33jcOmvV7kh7Nd0H45uo7PUbjUPVt45lmeje4
x7y/O3JrHIrEiyICmnpBMdIrcKl+HJ6uX/yXU0aCd495nuzyI/Ydf0YPP1Ub
BKHBxwG7701AwjQ2mzs+CPdh/Y3/gieArTb/wcJhEM4yxS4cCJ+ADRrPhv5E
DoKg024NszcTYL5Govfv5CDchjNk318T8LL4TeTixyEwZubsr91ChaGekQZ7
0REoMVNXrZeiQrNVzhpl5RFQ+PhVtlmWCjrGflUk/RHgdqoW7NlNBU+fgbN8
7iNQ3PRvCB+iwvaNGzuhcgRkPvJGbb5Khcrbb9advTwKsxfPjl/6RoVaZSvJ
1DdjcHPTwqbOcipcFlPI5S8m9jeVrw6c+EmFTe1xAxa/CZbpjVBqokLOoZ9d
kdNjwO6/sI8xTIV+sZbAzEPjMH/OOfi2EA3ctR9IqnePg99avpzxzTR47Ttj
/Z02Dgsl6R3nttHgWuahRjmuCVgUH1XUU6BB2oagPYmyE7DU4drErUcDz5cJ
rsJuE8Bl6SkZdoUGOkcuCsjMTsB9no3HlzxoIFfw8kfBSiqsKPjk5XGDBqs5
nHvyolTgFpquNr1Hg00kr48fNKnA0+hzVSSGBtXlq4f33qQCn9GdL8nlxD5V
okZaDlNh7ZGH5p+Ifay4kyjXjloa6KJrG39K0IHr58X1lS008NA+09glQ4fb
m965He6nQbOasgmvMh18Ms0nqLM0SNjWfOL0QTpsXuAU/yO+p8Dapr90mQ6O
9x/JbbxBh7PXV3EJedDhO6aLNN6lQxiNUSbvTYeYnlUfPR/RAQ9U6ZoS72Ml
sUzrBDoUNV7RSoukw9+jnS2FZXQ4kvVZ9UQJHV6yy9TyV2C4KZdCP4/ocPB4
remj1Rjepz7+eL2aDmoy3mEHNmJY+/KcUuJfOoxpiGkZS2NofrBiJ6bQYeWj
45FsXQy8nPEhnlE6DH9SLWs7jEHTr/WtGI0OnjW5f14YYoj3zNh+iEWHu5UV
3vmnMdifN5aMWYvB9teIxm1PDFGdmr2ZGzDsuOlbYnsTQ7WFdGKZCIbG8NN0
aX8MOw2nxUelMAyuVDI++QgDXTNeREcdwwRV2mRnIgbp/KDWU/sxOLYfKRB8
jcFcxe2Fkx4GBYt9SZ3vMHzeARvDjxO60hKoa3Mx+G8YEiDbYvB483WBhTAo
duUf7HHAsG67UkpjFYZ/afdvdFwidAzF9ofWEL/bJ9FTT+j8O6S56+1fQgfX
uGCdD4aZ3FQlnmYML34VH672w3CWdK30cBsGxnmLDyXBGHzqxoKudGNI3inT
//kJhnCegjyTPgzGk3ShT+EYrLMlHUXIGLKCQ/0y4jC4rjx39NgwBhsTm5w3
SRjyg/+7nj+KgU9MnpL0BoOdSJkYZxzDxQ8VJ6KzMSiraP/SxRiEfJ7fff4J
A1ViW5PKJIZyvfOfQosw7J6OPsE1TfjkVxoK+YbhyI2BPYUzGCSa2WKB5Ri0
X7s8PsHE8OvVTyP/HxgufE06Wc7CcNs5+v6tXxhKdaT8xOaIOKo6Fl5vINYZ
fSNkPo+hna066t5KvFYsbnJfwBBcubT1yj8MP9ZJ3r2yiOG/sN+nnAifN61F
jI8tYaBYxT+4MIDB7+r6B3zLGCKkXIrPEr7uO5pLZhCsN6Y+YUUj6ijumOQu
DgZaPreU2RSGoVyvoDCCE/0bzY0IXf9ivAybCDY0SH54jDhO7d2VN1kEL67S
PP+aiwGCg/wr/3e/tJUqwZLkYcCrZzdYIwR/aOKJTFzJgLlHdsb5BAcVjStu
4WfA/l3zfHYEn3nVVP1yDQN+CMbJThB61O5/sRNZx4C129PTzxC8yjmFHSXI
gC3huc8yCT99Jx5GbRBiwNY6264uQsfn3e7K4cIM+BTu/YxGxCNsk+XPtZuJ
9UntGWQiXk5sbfsn4gyY4nmkWEzEU6dXZp5PggECwa9FPdhE/ir5o4MlGRCl
4uDOR/gcT8cq3DIM0BaUVLs/iyHOs9RhSY4BN5mBnM1EXK5ZvV3wU2DAL6ur
gpoMDAbaT2PYigxIT2qP1KBjmOU5UzetygCW3Nxs5xiGP6Nw0WsvA9ojerr9
RzC8rZdfoqsT/jQSdLmHiH55OaM2vp+I3+cDvp/6Mezy7/7losuAdUb7bbp7
MHA5VDoN6TFg+Jl26TCR51zFiDjSYQZYny6RedOCQaBMiavDmAGVD3k/fCDq
iGYkXRhqygDz4r224RVE33QLX9azYIBid6WRcSmG53NLDe9sGLD7wxnOhULC
v0Zjyo2LDGjpc9D+l4phuqraQuESAzqUHvokvyLyaf51Vc9lBuQ/qNxyMBZD
jOeba4c9GJCZ0PlN7CkGsewbIHSbAZF9z9dKe2OY074y/eMOA5hmXifq3DB0
1Z3PuB3AAINKWflTRF+/GjEQJD9gwPUUy38MGwySO8T7c8MZIO3cuBhGzDPZ
hNIA47cMCN0g5qq6RMy5Xfl7V2QQ+bRZsE6fIeZccfpwYSYDKCOTV+Yn6JDR
9txEIpcBaTrGu7S76KC40VFy4isDBt99UxD/TMzRx3xljxsY4KB1NcjOiQ4b
Ny946TYzIMPb92v2GTpMvcNyjFYG0A03/eg0oUNBVeez010McHHoDv2lRQdN
TtZ5+SEG/PT1VxVdS4cDN08tVc0T/mtDTM9k0oDpOnrnxBIDxhPTRi8l0SDv
QuD8Xw4DGq7H3jodSYPtJwpY/3gnIb7nYibZ93/nKaKK1k9CTVNuzisDGrRW
9A1v3TEJj/V0VT71UMFtnUej98lJMCe/3IamJ0Cee9WpOeNJUInRiT8yOAH9
zJT6ANNJgGea33NaiesMUtOvJ1aTcMfbTWPP5wnQKtD4kXJhEuibDTIYNyaA
98zS19/ek6DvI+rtgsch8W1Y2o7ESRhRuncms3EMLhz+T7c/eRKcpM0unvo+
Btsp/1oTXk9C3nXfuo6MMXgvtZNPKGMSGr/uXR0RMAaFCRWXufInIWRf/lSq
4hj8iWCq9NZMgkzPRNmZu6Ow5G//JXZ6EgQuwIPOdSNgZ6Vev/rkFOStNBFZ
JA2A/Vbj1C/GUyB73zws5OcAOJCdvV1MpyA1vF1w7sMAOLm/FP9hNQUdL63z
k28OwJWQeef79lOw0G70dmTNANz4XL7M9JkCfvLDoFBVCoSKGKsNpk5B5BbZ
dRNXSPC5zflFGZNY7wFdScHyH+z/k8c9HDsNjEVvaamwapA+emn2xZEZSJ/U
47tPLkEa6hqRhcMz0PzirfSCSjtSeylqojY2A5om9fv8L7cjxXnWmuyJGdC/
Ys8ZedOOpMtLgtMYMzAakFgRsLkDrTE66Bs1PwMeDk08aZwORLp48oLn+lnY
9vqsaezvfyj0hYOKsuYsDC5VaHww7UX9U8/q0kJmoSH8PG1xBQUNcvxTrR7P
wmY5p2LGNgoaFXC7terpLASeGtvXuJ+CGPKGclcjZmH+0Md+My8K4jrHF7j3
1Szs0mt1tu0nrs+rArQq8mah+feBW97FA+jSi2sZfd2z8InPabHDegi5ptoF
RPTNgmxZ6fgqzyHk8dHY6hB5FvKcsjqkngyhWzVKPOnDs+BaN6m76tsQerww
Yuc+OQvhq7ft+rRtGGVetBdd5GOCC69J4Jm+YUT9zyxEfC8TvPr9a/SNRlFd
+qB8kjoTnJ5pbflhP4rSxX1rpfcxYWLbnUw1n1Fkz0leq6DLhJcMgd3lSaOo
5Rc1UtOACQqnfmSU0UZRicPjZIuzTDjGS3FXeDKGnjxHxc+CmAAWjQXKH8fR
JW6LMxtDmJAjMtwcVTaODvkMz0c/YoLy8Fx/X8M4Wjy7Ti8xjAm1zlX3FabG
kaf8ueqsWCYIbVmz9r7GBLIpZTbWZDEhKhj49xZPIPkJlfEVLUyoCD+lqpFO
RQL8De++tTHBk2flj0ufqWha1tPBp5MJFsee3bpVTUXldvmdo71MmM75j65B
oaKzzZo1DaNMsL5DPSYnQUPhX+Ft0jITPt9LOIue0NCNdtKF0ytYcG7X67mu
WBo6Nx24dSMvC26f0ChoTaMhBZXqqODVLPAfKNZ2LKWhytTjgVeFWWArGco7
SKeh2UdmdvsVic+5eE/dPElHPW+nxKeVWXBU4OuMmzUdVVa8aMtWZcGQwKN/
Bx3oKHyhzUhagwWfTdm779+kI4VrZ3VWHWTB0uHC4nMpdLQ+bIFZfogFYrwp
PDqZdDT7PjHf7ygLRERrVFn5xHqUvl10QxZ0lp1bXPmTjmytL4q1WbGguV1f
y3+cjg5587aG27BgMOi9tf40He2KePf8+DkWhNfc4xpYoCNm3Qjfd3sWPH6+
teGbAEYRB9xm31xlgVOBqnGlMkbVsj7NnoGE/5V8i1suYfQgo8Rm8QELpsKL
GzTdMDqkyNX/6CELgtZ7HvzvOkYVqk8nkp+y4NlLRXL9XYzKtF/z1sewwChB
+P6TFxjdLR0OtYljgY6J16vMOIx0DypvHEwg/Opd25mVhFHJ0eJtCyksiBK+
ftcoA6Ni03rNXVkskPvilSTyFaObLUKlhdksUKH/+6JVipGmtc3hg7kskOa9
IK1bgVHhuYFTpwtZ0B7XXjVQi5F3n0I7pYjQX7iD/egPRnsdPGw9vhL5mjx0
RaARo7xLc5dDyliwamL1zOd2jK6N6eENFSx4LbRmVfc/jHa7BfskVrGget+z
E6QejD56CQYV1BLxqVU0e0rByG3Gkh9+s4Cn49WGPUMYKd9KCP9VzwJh1QMz
RSMYZfnLvSI3s6BubqvkRSpGVziuMu5tLDjzJufCEzpGCkF5GewOFnTxSnx/
zsBohJepEtzFArPzdntuTmGU/kinULCXBWE/npfqzmDkvCZQ+1U/C1bvG7cb
mMVI9tnPcnkKC4rDaja5sjAaFBQ4lj/IgrTg112NbIzSoszqD4yw4EbFxvzN
8xg5iry0qBtjQffvpji9BYy2x/X8s6QS9bLp27OjixiRt2y3J9FZ8GPy53Pl
JYxSk1yGr06yICFjffI0wRekP7qxpon8OPwuTljGSDJtaiqIyQLRfdY9MhyM
euW0bq+fY8FZJYW1TwhOfH+XE79A1LtK1+FGgs8pVYXILbNgdovcQ+L6E23J
4Rf4xMWGv9/ITf+7H9qlZhKly8OG9p/8O4cJji94IVa7kg3p/fkhHwm20fyX
bMHPBmqsGN2SYLGvknL9a9ig7hpl30Po6dBx+uC6jg2RVXG9hwmOLcvcwxRk
g8xclfNTQr+VPi4OFGLDbaM/c/mEX+Fqdb11ImyYGHuSUELEo8XArzpuMxs+
jswcf0PEK6oOGcpuYcPgETk+1zmMzIxWNuVKsOHJqHnLRiK+GxoMT+tIsUEj
te1TPBOj561tF81lCX3zne9PTGMUFvBMtkmeDRkFBy3uTGIUqnB06NQuNvjf
zTIPxxiF+BdeMt7NhpZ5PhubCYyC5N12/lFjw6oUXkfBMYzuN+4YNfyPDd17
ttRlDGN0R/bFleNabChOHi72J2Pk+9dQsUabDQtFL4587SP6w5d74ugBNrzQ
OKrV0Y2R1x8vt8OH2HBLdOhCcRtGLjdMr+kZsaFZtJl3NdEfTpL8aqUmbEi2
Cd9mVk3URy1i6JixoeZgZpFfOUbnJVSv77dmwwyn1ff6F4wsqtf5qNuzwVzf
/sNMOkamHj80ChzZwHyfqn7iDUYmYneZe5zZsPPPhN09op9PuFFvqbqy4enC
9swIov9B+Lef4g02bCezXx0LIPq/LEgn8yYbumrTCzN9MdK+rL248zYbNt+z
iqUR80Tje+ZduQA27Dnd+WuLC0ZKTo/vSz9mw1h7WfxaE6J/1h/UTwllw+qt
0wn+xzCS/8JaIfmMDcoZdtENBzGSEXB5sDWKDfqRr55s/Q+jzYVHH4omEt+3
1tIyEiXyb7dkEJPMBrmg0cL69RgJ8X9eJfyaqJ9AHfs9qzBaZyv7ZGM6EW8k
bZ/CoiMeXp4wgTw2PH/3qFO0g46wRXkkdzUbKjdrpPtFEPM0I8St+CcbnK5Y
1Vg/pKPlBcNjbnVE/DMuu2/wpyOBt22LbX/ZkFa+cFPChZj3M+Mumf/YsD7T
7m+cDh3ZR4vomWJCb+qpQJU+GnIZ7RJbOcWGLXFixSNNNOShmzr9dYbIb8W7
A/d/0JD/oGLmjnk21H/Q8zHKpqE49YPCLN45WFEmLG3hS0ONra7jSVvm4I+f
s7v8GhrqUFD7Yb5tDt4wAl78WaCiPv/ZlFXSBAvtWzSjURFV9r6Vl9wcjG0S
7phvoCJ+n5jyI2pz4LkUHPLzBRXpi5THThydAw+N222WIlSUbyVyeL/XHJiu
u6dUzzWBogTvjSLvOfDmZqUW43F0vW70mcHNOdjU5RzzqG8c7TnwvdPizhy4
DYzodX4bR3myFz08QuYg/fTlG3o+4yhnOi8+LX4O/O1kS1UGxlBWpBFjXeUc
dPS/j96cPYrS6h8kUYTmIZW0jC8xh1DYngXbFJF5qNs80G7VO4RuxlyXsBWb
hyryLj+l6iF0/LzDq7Zt86B01sj1aeQQolP14msV5sFAWENeRmkIaQnMR+fo
zYPhVJJw2ZlBVG/oGebnOg/uMce+vHhHQawa2ztClfNwLmV+g/NSLyJFotkN
HgvwN8Joq5nrH8Rs0hEPWr8IopFm5xPrYsEzenv57e+LoOrYPaYGzbC5fvuG
QbslKD5kkhTpQgKt2dZpe4clKPfMCXAIIoHNtkcdvReXgHF8fbJMEgkS3CeS
Oy4vwR3/ErXrzSSQXF+o8vv6Ehz0jesz0yWD/KmjJ/MfLoHitWWrWQEKaDS5
PLyfswSznp31Uq8HwHpO3HUpbwl86Kd21XwdgJsyf4z9Cpag0agn71zzAHzx
UhO58WUJtlq4D5/kGQRdobk0l0pCn/ainYHTIByxCK0waV8C489Jds+3D4FF
W/aixDJxvJ2G+q3PhyEgw22+gWsZ0hSMTrZlDMP728rsIJ5lWLzAR/6OhmFx
W/b0KP8y6PCbHwE8DOmXPowXblqGb8LnVqw3HoF5Vman0a5l4NBy3L/zjMKb
LRmF/pbLMDN6bvaDLbEfoV7KVz29DC2PHmYaeY0Bq0w+j3JmGbgrG2oaQ8bA
6GL6h+MXlgFSsoaDcsaA+eHdG2HXZZikr1ULWx4DwwNvI7LvLYOPOMVTKn4c
pi68duvJWoYDolk3C4onYPblSg2Hj8sQXPhr862aCWA3XFkayl2GQO6+p1Id
E8CBveG4cBl433/KlWROgIB0VS43WobQo8XQupcKcqTBKYWWZTBMqE4XzKCC
gtiJbx/blkFD7uUD8c9UUDb9+GBv5zJo9VEMV1VRYW+5j7Bu7zL0Mu85hvdR
QS+VT/PUCMFDgnBCmAY29gq3fRaW4bx4iPklPxqciwvTn19aBsl1FnnvH9LA
rpGx+h4XB0x6Xyr9jaKB88GvCY9XcmAmeMvJyiwaXJc2/P5KkAN3Qw1Gjf/R
IIx0lVOxgwMtp2t/jarR4blYY42BPAcObjXPPq1DhyhT9YjfChzgbI6Yf3+U
DvHli9JtKhzYPDRUOEXsp9NTnx0a3Ud87n73mUwgHZB9bsh6Iw6Y/RKOGqyj
Q0mD28k+Ew4k92wkX2+hQ5Ge4sYcMw4kqDW86u6hQ7bEu0Tj0xzY39Qur4vp
kNCZUBDmyIG8Pu3zWkIYYo/Z3LZ15sB05JaWuC0YIotEQPkyB9Jdls+3bMfw
ODri1293DiikkULb92LwMX1IXnObA2KW0f8Jm2HwRIczuu5wQOpv+6EjNhjc
dq9wzwrgwEtHvNXkAgZHAX/2iWAONMreW43dMJjWegk+ec4B9X2WNKeHGIz2
qbbZRHFgtlPX2TEMw7F0aoJCDOHv2XWX/VEY9IJd5GsTOBDM5Uf3TsKgdPD8
gVXpHAiRUju5JR+DfO4Wno73HGhy9rQZKMKwXbKzNv0DB/I3qXz/331CsUVz
S4NPHChK/eRpXY1B+OqGLaKFHPC/UlIUXItBsKu+f6iIA8p+FQfC/mDg+3L8
ash3DujnWCzIt2Lg3sm3xwpxoC0+XqGkA8NSTBVTtpLIx2WLYPluDDPeekHV
NUS+MlOLQskYMGXhWPQvDsT6XAkJGsQwbvZ1nVM9B4yHN3hbjGAgq6rH87Rw
4FrmtaT7VAw9yZN2LW0c+BHU0dJDx9C5Llc2rZMD3SL3JIQmMbT4u41f7+aA
9+HPN6SnMfyd2JV3qI8DMU7sf6tmMfw6O+IjRCbibcw8UcvE8KPurQ5lgAMM
07BKBzaGci3HFfnDxHr6Nfqtcxi+Z0jVBI5x4OPNgR9SCxi+iPaGmVE5wPPb
yPjIIoaCkARzGcyB7NfJ7fpLGHJmTotNTnLAdjjNXmwZQ9ZFkb7yGQ7ICp4e
ryH4XXNzWgSLAwXbKNdNORhS9SOu2M9z4Exq8tyn/93vzDNWVVviQHO+SACV
4JdSa2c5HA78//9B/w9jqfK9
"]]}, {
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVl3k8lN8Xx0VJskQISUiSLyXRIjlSiBTZiWyRbKksaUMkIdlaSJItSoUs
pbhj30b2GWQZM8o+g5gZ28zv+f0z83q/nvvce8/nc865z5V1uW7mxsnBwRGD
/fz/38htohM36aYtqi02xWbTYPyzlcuIxBlo/1OCm1qhgdjW3rivEhZQ9HBO
+NsSDQ4cF8l5I3EF1Hveuq5M0UCz43BhooQ/vFxtNd7dQ4M9J9Pf16YFQpXY
8xe7f9GA7wPP28XdwWB4UKWTs4kGQ+FDT60UHoBgmYLlzR80wL2u1XgqEQEn
FiinGRk0UO+6XbT30iMgqMujbak0yOc5oFKVFgmls4a5/Ek0SAx4JU/b/QT2
HH7MKIqggauJz/aLCnFgqhXtlutOg/CwmNvREslQZ2lQbryXBlVS7mVWFcmQ
cEv0SbYUDZjlOotyl55Dv+pcG2k7DbypS9d/pL0A4w1JS9ycNLC45HR1ZncK
XIzLy9w6RAUFDQ2rCwrpUJTxeXJTHBWu+NMknkhkgweBl1t7cBYOcyXeKfbL
huAHj/XOtM8CZ6L679+N2WCH1vuVa2bh7ZfgtAOBOWCeqOqe834WBqa4dvd0
5cL92nftR27MgomzuPzu2Hx4dUrdep41A5oXTh0oZX2GHl/utPubZoBniBI3
bPkF+j2WhzmWpoHoFUnb/OkLEO03N14bm4aKOjebTyqFkEnTp8/UTIMN+YME
x2AhuMTHjP14MA2JuzTSco4Vw0cT/t/J81PAk2z4bm6+BPjkusbX6yZh9djo
6jvJUqin83FWFE8Cdei2lfnpUiD55J1zyZiE7n15W8uSS4G9yak96O4kpP/g
Drx7tAzO3F459111EtQptUbc98uhoPVO38eXE+Ckpr24k6cC/huXdmNbj0N5
h5qBgTQCZtlZEY68MbAJHxyojamD5L/rb4Rzh+B60S2VV4vNIOQXeNlUrAMW
4glNGza0w7yUEO2s90doqm5A7VpdQHSI687rrkG5+LWxpwZdEJk38a5QrRY9
IqrxGpt1wW4Lh6PhCbVIdzbdoulqF9A5K20fX6hDP8WDJnGJXaCyPMna0FCP
Cq/v21480QXMtUnuwA9N6NWuKPfk5G5Y9bIsFjX4ha4FG/LbzvRA6bM5iX2O
PejDTiGHy/QeUIoVHtwd0YNmKvsKXDl6oWpIRH05rwf5cnoY+4r0Qpd6lvb5
hR7kHxMZE67VC3740sWg8F4U8qZ2y+fYXghScJCseUtAz6tPcnOpEKDsddnK
Q9SHCK6brHiOEuCj3RMPR1IfEuduy+E/RYD6Zcp9iQ39KNXIXk/ckgATY9/O
Kej2o4zuOxEq9wlQl2SmnlHTjz7+Kee0acOeD8wirsoBVL1FjV3gQ4RfeltU
uV8OIkUL1fLo20Q49fLFIULpIIpPP3DdI5wIao3NO+72DCKnw/+N7EkhQrdE
4KnTQkOIZS+PUuuIkGXrP9oSNYQ0C8VConb2gZ3P+abc68OoxGqV5drcB9Fe
+fv5BEhI6t1y2amePnjilLxWKElC4dMM390j2HiLeHXYR0JmoYvDA4t9sDfd
4/sOHRKay5+tuijTD6ZjgVe++ZGQyvrIAwjqB/qvFN6vbSSUm1XHktw7AAXn
b2VeCxxFfo8sRuHgAKwb+nVFh4yiE1fHaq8cH4CWqJn6l1GjqENp45PP5wdA
1VNz1j91FC0Xnd6uGzgA5SbvVk5UjiJjXM2+a40D0L4Wp7PKGkVimWa8cZ0D
4Os1kknkJqPRcPJM8e8B2EsKzn8rQEaBBpzFa7QBMGYmpS/sIqOMX6e04sV/
g5GqAG/2CTL6N4gzLb/2G6RrKEfUb5FRVZXp4cFbv2HHLplbLcFkFJVBEt3w
4Dd4+/MaGoeSkdQVjt9Gib8hNIa3RvgpGelPg9twxW8wVuKnfsgho21t7QZc
9b8hyTp07c1HMvr92VFJsf03+CbN5d4rIiO/myG0G5Tf0OLv07X2k4xSl6uC
N/ENwi3jn6k83WR05fcFeyWxQRin+r616SOjg5XD2iYyg+D0+bpB8hAZ1YWy
uFLUB+HA0/uRv8bJaHazdpyywyDsHeOdvLBKRjpilZnmn7HnEldrQqUpaONz
0et63wZBJd05OUiOgpq2+544WjMI8XuW5+wUKMhEaHePJGEQunDe5uMqFHSZ
L2wTeX0Qvlw6y7VDi4LkYvo7uzcPweO5Z9dvAgX92aKWXi80BNNVUncrdCnI
ezPlSP7eIVh6kH93myEF3eXU8/A7PwQ+9YNBPRYUpB32Rt3FeghOCskcfm5N
QZwcdA4L5yFQXC/N1bWjoOj13JSjAUPwjvChztWRgi7cY7vtDxmCvoe7AonO
FCS0aq2288kQcJ7gpR69QkGvmDytrLQhIMQe0UEeFGQf5PxyDus7xy9tl/vr
SUEy9O+u5MIh2P00u3/Zm4Le//Ncq68bAuGTA/3jfhTkebO2qfzXEKQbZCvV
3KSgA/M7n+f3DYHzTx/nJ/4UVEbFqzydGQJt+Y2Jw0EUdMdn78oDOjaecD/Z
OxiLZ+Z+gx/HMHA5msaN38Hi8SIkuvAOg47wWrjJPQqqnzzgaCEyDIlrQney
71NQlMfj//Slh0G+73DA3wcUZDw+wjiqOAxeXCJ3REMpqGcsPn6n1jBEV/1X
ovkQi8910p5ffxjwk5L/VMOx+Min9rNNhoE36qiJSAQWn3Pq0pztMLx9Hdk2
hjFlZKGa7DoML+J33cp8REG5l8/F9fgMA05NTu98JBbvUJZdQ9AwFGW1nP2D
8QH7NYVvYcPw09Qh3PMxBS0MWPzLjxmG/gnVlUGMy2w/odfPhyHCrKBYKwqL
v29T7NO3wxD7Tr/4Ccba1pdtQvKHYZjvMasW4w2EMvkbX4fh2NjGN9MY11kI
zrtUDkPfo6tJHE+w+LuvVlo0DsMuC/dxToyNzXBP9DuHQfxjU/oCNn5bp7jV
sd/DsJPghtox7jG5Iaf0ZxjUNu01ScX45a9m6k7aMCTprpubYWx3Xu4H/zKm
v8dSNwPbrzT+zmM25wioi8j3RmNMNuo2n+cbAd6MLw5bMc5t/k+GIjYCf7f/
uhX8fz3ORsz0yIxAj1T9rl5ML5XGwW8NSiNQtWHKWRpjMarXbLzGCPyJS7A8
jenLIboqe0lnBIzOeBeaYX5MnYi22ntuBOyXf90xxvzqcZGIoVmOgMmfPZWq
YRRU9SQPfXcagZtxUyHsEArKKzy6GO41Ane+l7d+w/y/x7J0EA/Dxt+Vk52+
S0Hue/8kkGNGYK+WudYVLJ9Mjf0bCl6MAH9RIVfTbQqST008eKpgBMTjWBUm
ARQkUC17ZWv5CGj47q+8dYuCmOOFr3qrR4DUvvTs4Q0Kwmu0b/AkjoD/i1a8
kw/mp/3lI+pkLN6UEkNVLwrKCJ/1ZM2MwMdjrJ9TWP1UTGzyNNxAgs0i5p9k
sPqKOyLfPSRGgkPtvxoTbCmIq8VrVleKBN/2Lm+psKKg2w5fN+fJkmDn2/aE
NnMKconQ1bqpTAIib+brsvMUpNHllMOtSwLrAqGfCToU9MEtD3kZkMC3Q99E
9CTm1zKtv8OYBO/8r96LOE5BPDIhAq+tSaDqtNq+V42CBn3eBB30IUFpdUxC
ANavLm74k5B8kwQL5V8VrbF+1pCsXLAcRIInz3uL5SUpqPDHD1LtQxJci/3X
Fi5EQRFbBgxtXpEgaGinmzmbjJbTZK9UviHBY//t/c9XyMhX9doDuSwSxGT9
fFO3REY21szimU8kaI2xNRyfJiPlHDGpsFoSxL/ZHaJLJKMeHXNqPpUEPsUd
hpc+kNHKW8qb4n8kWM2NEmzPJiNZ9q3zP5gk+Koy7Kj2Fpu/MrkAzzkKFZ/5
WhuTyGizJsGTJjYKzQ//MA/cIyPNw7bj6jAKqq1N+kxDMnJKnHxx8swoOL9Q
77h2mowezwfr6xuOQgvhcXKrFrb+l9Qca/NR4MlJX3U8SEY+yoOud66Ogpin
WmTbduw82+tIQs9GwaFxrLG+fxQ1RNCeNSWPwtOssFs6XaNolhICnSmjYO0k
K1bQMoo0MzPSyVmjYC/L8LP6MYq6pcn2m76NwuvfGt3M16OIW9yt34g0CrPR
D6RD7EaRN69XV68qGa5xu8RM4bHzvFKszOgIGVTWUFV3DQmN+NWkoBNk4GjR
UPz0Dfs+IEo45+uT4RUjblQ1m4SOZTfR7tmTofJ7ftv9OyS0UVuBXz6KDGWp
s1+05Eko7caowc0RMhAjfkkn9w+j1j7rSoE4CmTmj4xCwW/0cGBc1DOJAgYd
QwX1Cb/RscEg3/pXFHCsbO/TCPqNskde7r6XRQFb8Q1/e0/9Rvf+EsMmv1Gg
zeFwvzhhAKksWuvXUSjAfrnq0rLSj54J2rQHHx+DgsxnnCSNPmSubzM6NjYG
O6syjgvc7UFHMmKsM+T/Qm0Ni7ku04JIrKQej5BxmKh64H1D9yv6Y9ieJVY7
AeamJK6qgmyQj9n3LKFpAnbKlzf+zcyBK/iQO3y/JqBKxfxU5qtcIF9QvcjZ
PwG8Y5x32x7mwbB5AmuWOgEcC9OaAxcLoM/B3LZechKK1koz12aKoOUGUcD/
5iTI4N9VUfW+Q2HKSHCn7BQIUj8MeSXUgvd+qQG1fVPgpll13aO+FhS/22gm
K08BX7fdvZPLtfC2r3PF6ugUNOtdMPdzqoO4HXV3B42ngORG3beoXA8+z/Pu
jwdNwbbqsM8XqhpAKeFG2HrbFEhk5ueoVDfDX5nPo5e7p8D4xp+2cVozZBZO
ncL1TQE9L9UiQLoFJDtcOcMpUyCSzprccrcFtghahfMsT8Fn/0OaomqtMBGr
+Wi7/DTwjHJ7Pn+Jh5worif770zD9glUbwrtIDwW9eBAyDSIlkUrB7m1QygI
+B+OmAYrdG7PrZh2sKOLO56Mm4a14jSXaUI7CF45oHExcxqa7M6Zzmp0QDDY
jt5umYbf5JsnOxo64Dz98/EmyRmQpbfb7+zrhIqL6gfbds+AYYFe8s2JTlD8
9F2+S34G+3TdZPSV2QmcV+oEBw/MwLtHafzz4l1Q3tn/h6Y7A/iyjZsdbLpA
9tPGxB1eM5CNUjNpXV2w5Go35f5jBiYdj0W1lnVD4PbV7X24GcBtzGi8Ut8N
9JrXJw0bZiBlZ0IYuRtj2aH4/zpnYIU7+GzMXDcwRxyPzv2dgXxKvnOCYg+s
XHKLCBaehW+bupU8k3rgzlbuz1M7ZuFUpBrbIKMHVityiZd2zYIzXWh6y6ce
WJOYUNJWnIWu1f1Lxxt6YJ3o2cmpPQsXfmw+b8ToAQ4LP+nYa7OgWpd7TtGi
F0K5hM6u+87Cj7jBUD3HXtjwteiGr/8sJHnLxep79gKn8L8605BZ6FjZJrEY
0gtcHQFeos9nQWVcsnotvxe4je9+S8fNgr6L8aUaZi9Eru4kCzZg92DN4e6d
nATg/vhza1jrLIRNaHPabiXAZl7WZVfCLARv7L/3YBcBeJpCNynOzEKt2CNi
gA4Btp6JNCvaQYU8iZZ10TACaKHrQg1SVAg60PVLKYoAvpq2HQOyVJA6PEZX
eEaALlXlCxuVqTCfV23Sm0aA1F1dhtY6VHCOoOnylhMA/+oHj7ceFaKllaZs
KwnA2p7TGGpEhTY3yYX4WgI4897W+2BBBZXLP5RK2wmgyNh1at2DCv3NL24S
/hLA7uZmDmFfKhAsfc2cZwgQOztXpXCLCote7zO75wlAo9Rqmd6nQuPOvje+
a9i9ruPasawEKuisJRk82EaEiXPmjPIXVDgorLZwRpQIko1aZfjXVLif2SL3
T4II9ysF1ek5VOAoDpDj3kOEMx9KDxpWUMFe8QWTW50IgXvfUh0QFULy9A/y
HiNCXkbUp5t1VHhs5rp56QQRtr689F/aLyool178GHaaCFrCelOF3VQYPyga
sseACL5PD+TX91HBQFdx4ycjInSFb9hHI1MhM1PqcNBFImxkT/3hmqCC9Nfc
P+UWRDhypydbfJYKCs2ddiRrIqT4vZfTZVDBK8zq7YQDEZwczks/30oDMJAS
I3oQIbHvyFD+NhpsDBRysfIiQp25TFqVKA1MJ6JeVmL30H1G/yQmdtPgurZE
z+mbRLCpH+xbk6dB3g7GHxd/IkTrNLwUUqKBC/co/VogEahHUkRPqNOgssVK
WfUOEWSKH/aYHKeB2Ssbe9pdIpipeCdd0abB/EWzzBf3iRCRZ2kWfJoG4iMa
GxVCiFC6B4TiztKAtXlr1JtQIvxNV+zIPE+DVx60w+thRBCXFH5WbkaDDFcx
AT3sHnxv2x++UXsaCBm4uz99RASlgWKdQWca9FTsl3sSSYT+rFB/ojsN8pf7
hXwfEyHK50JelxcNqMtfT2hFYXodlRps86NBZiRP7j+MxzimBJsDaHDksJZ1
8hMiJLWUn667QwMjk0ZL6Wgi6CY/CkIhNLAc0MhLwHjOwfxjRQQNdIL2WVIx
Tt8nO1L6hAbrjiau6jFEOD9PFS6Ko8EGW/9+V4zXKn7qFyTR4Hu2X9U9jD9E
RN95/4oGZPohiRCMbS7YfM58g+3v6vc5T4y5xRXIbzJpoOmx01gH45LRf6Ip
72lg+DVEjY2t5/qx2jC5gAb/dGU/vsdYOODZ/WdFNLipe6HyOMY4bYei6DIa
+G/w8CvF4vHl+e/Pox80kB0nt0piLNXFFA/D0YB+RZ94DYu/5XWD8b16GpRO
KqdmYnoFuyWHBrXQQK3ntFQ9pqfiQZeSm+00kHI/59aJ6U1gHpzw6aFBQZnY
/cYIzM+a9Z3X+mlgkRPj9R7z53Bsq8mVYRrY4jOP3XhIhPjdV8vtJmgwFsaI
q8H81p5Un7acpQG6Ea5o9IAIs8Wcuy8u0CD41IXqH/eIYKSfHmmwRoPDOB5h
h2BMv81HHN5xzMHrqIGB2CAi9MxIMaS55mDX2S91uQFEeFg2pSTJMwc0FnVX
yg0i2L7urHvJOwfXBX6l37hOBNXQb5dF+efAZ/8rV3Usv4cNIxO3Cc9BnFfa
4G2sHkoP+CjHicxB5+RA5oobEWK3WzRs3TEHnpv4O91diXBiSHaFW2oORvkk
ollYPb3yq3Re3zsHASpG/spmRLhumb16RxF730ouhNOECPqaMc+ZSnPw/Y7Z
ydpzRFjism3+d3AO7q9+W9moh9XDy0XVqeNzkONiExd9hAh8Vf9xEM/PQaZa
Fj0X6zezxjIl0aZzEDa1r6IF60e/fot4aJvPwVW1PQcIW4nwbHm9PcdmDiyu
fb2cvQHzX6Pjrb/rHAgxMq/txvqdeIE/CAfPwRZh3o9pPwmwrHntX/3dOWC9
DZfSLSPAQLPD++AHmH5P7PZ2fCHA63F9wdHwOVAo7Tyem0kA6T0SI1/i5mB9
yHan1mMCyKdWPjifPQeb3j/zkzImwKb9xWob3s8BLrnurdkZAvwtz/1bkj8H
ki/vudzUIsD73mcXpL7MgX3sqTFfZQIoCblIT3+fg429S/kO2HmiGsVdFdU+
B8NZ37lk63vhZKDJeu3KHCRqhc5+U+wFuufEXcP1OXjl7mNHl+6FQsewlV/s
Odig46YoJ9oLcoZfGf0b54FrSVNeb0Mv8EjtWKAJzENr62uDir4e6Kke/rtz
zzzsyxmp943oAW9+345b5+bhzmCF4fX2blDg3GyyfH4e7hkcVnxZ2w0j9Ldt
D0zngfvT3itfyrvBjNTZ8sRyHi42DR8petsNx75q1L91nAe6dZrkmm83bLRd
/956ax6SfywkVvJ2Q1p2bNaetHl4Keo36X60CxxPH9YaSZ+HxLVot+eKXSBH
7u9JfTcPz3ge8pZIdEHe7n3cwu/nQU7v0P6a1U4oSa324CjG9mcieFgedQI+
nq4y1DgP1UWGbttPd8L6PadvL/7Nw8SNtFjQ6YDLluptW84tgG3MVMKf/Xgo
7XVLqqIvQNqczjaBrho4ji/k/PviH0Qy77oIn/sKMnruS0lnFuESx4fqq+cu
Ig11jYSSv4ug3P/3cohkEVJ9KXZBdXIRxkQ+nQ2wKUJKKwzegulF+E6Vu2/w
ogjJ4CoisuYWoT3l+eZQoWLEa6xzO3FlEa6uvgrS4v6KSK7nHP0ElqAwQ1Og
YqIERSc5qygfWYJHJxY+xsZ/QxF03an3x5ZA7VXk+a/N31CIrfz7PSeWQN99
JruQ8zvy3z0us1NnCQyO/2s/4P8dOX70FuE1WoJjn9vfqFtWIPXaoNVxhyVQ
Z15d0xX8iUYWnjZnPVqCwLuXG+xdEBpj38uwjFqCcq+gLTdTEZrg8w7aHLME
D/eICVzsQmhOwWivV/wSyDxK6C2VwSGOS9xhaq+XwDeLcvRxHA7J1T44Vl24
BLi6hrsLV6qRe9L198O/lyBXPvbA5bUa5Jlx+UH88BJEvbCbHhSpRb6fzlvq
ji6BuD9VQFulFgU1/seV+3cJYs8a6L13qEVRq+OXfeaXIIzPN2l7ZS3Kd3US
W+Omg7zprUt6gXVo5vDFRxJqdDBX1+zN7KxHzbljCm/U6ZA+LXSaOlaPciVu
N8kcpYOZs+Z5aWY9cmKnb1XUwt5XAgFl6QbU3TKTcESfDkoxswfXPRpQhXNU
urkdHUhH31T4LDegJ89Q+dOHdIhmEcyNNzUhd05zW6FHdBD/xcspKdqEdAP+
riQ/poOk3tPTrfJNaM2OXzstlg6pVv9d7TvdhPwULtV9eEEH3oDNkWmhTcim
kt7R+IEO2f3XVBoXm5DCtMrUhm46eIYMxEQ0NiM+nvacH7104OkHDlxPM/on
7+cc0EcHY7yIc/9oM8JdLu6bGKKD+p7MgZzVZmTXdaSxfYIOHGw5mxyVFhT3
HbLfsOhQ3NhipRXTgvwJJEfrDQwo071rZvmiBV36F7ZTaCMD6mhbdxi/a0GK
KnWJEVsYsF3fltFV1oJqMs6GeYkwgJ+4fZM+qQUtPb54+bgSA6YXnW2rlVvR
YPaCxD9lBnAex+PLNFpRTXVSb8FBBgh6bOWP1m5Fcau9xjIaDCgYtFlpNmlF
itftTmzWYYDW386fX/xakUDsKh2ny4AM8cCWpNutaCkvrfiOHgMmPt4utQzF
5iMP76caMeDAbOmBW89akb2Vq3ivJQNE7h7cKFrQinRvbeyJs2HAxpD+ixPF
rWh/fM6zs5cYcO0j40XK91ZEbx7n/unEAPbUtR0vGlpR/EnvpUwvBqQduODB
GG5FgXb8Rfa+DKhw/z5eMdaKHII+e4vdYEDvM4mH9lOtSKlojvIkkAFFWiel
NJdaUZ18QJdfGAOuH2q677gFj8LfV9ishWPzxah8qOfHI10ljpHHkQx4VBJ4
XUAYj6oPxkynxzCgVUOi30ASj0KLO24oxTHgk8rU42PSeKSjIcYsjWeA/Y64
sa1yeFSl+W5j23MGOAT7VNrtx6P7lX+jbV4x4Dtr7QxBGY+0dJSFxlIZoHZr
c4K6Kh5V6JXvWn3LgKMGLnEpR/Co3LTtyP4PDAjwYrRs0sWjwG7hypICBug8
dJd7dQaPjljZnNb5woCplz/9+A3wqOQSxcS6hAHohQX/u3N4dGtYkUAuYwBr
yP8aOo9Has6+9r7fGWBUfawPZ4JHhe7LHo+qGHDl0lNeH3M8uj6pTdtWzYBB
j87BHZZ4dMA7IiCtFvMrY/dIjhUeUanNq/saGPD853aJHTZ49OmG4MOvTQxw
anZN9LLFI+9FCx5oZUCfEMksyw6PlINS41raGKAsdMul6hIeTS+PiFh1MEDV
Rbb5pz0efbi39/VoFwO4v2x5lu6AR9fYnrI+vQyoybjy0/UyHik+LHzPJDJg
4VeELZ8jHo1vpKtEDGD5+IXg+wrj3McnSgSHGNATTtrI44RHbrxhmq9HGJBg
rCt/CWP5pw04BTIDXEtKexMwHhPkMygeY8CZDQJyBRhnJV5sOznOgP1cx4Q/
YOwi+tK8eZIBTE7NLzEYy70a7LeYYYBj0WHOixiPSso5kagMKBW9LLKCrZ/x
5upfr3kGfLm3lRaJsaPMJ2/GP6y+rr5/zcD2L521sPCQjs1/u2yPMcZDe48F
Cywz4P4VQnwEFm9a3n12yioDdpAqZzIwPS79V/toL4sBY7Fap95hekl+5uEr
4mCC4KTmq0eYngOqFxK1uJggfbJi9Tymd8rXJPGmTUxQiO4JWLHGI5sj/enm
PEzAB/3cFoP5Jf5deu8ILxOMdSsJbAs8elGVf4guyARGXyH/i4t4ZHmKVh4m
zARwLkkqx/JBpE5dm1+UCQKSC76VWL4kNiMjeUkmaDw9axpoiEcXjTd1fpFi
wqVfh733Y/m2rd3I+sRuJoQosniqsXx81tPraibPhFDW4PwbwKPYB0/lOxWY
4Lk9w3BeC4+iFfX+mOxnQlJl8WUlTTx6dK/E/fwBJgzN686cV8eju/JJ184e
Y8LSucMtl/bh0e1fRkqNmkwo3MXSGd6D5f9tzmm9k0x4LXH6l74MHt3A3/A+
rcuESWMPuxZxPLrqb3pd25gJy7nLoWk8eHRFmke18gITik4OLJhuxPxtQnMn
LjJB5n5x/zQb6w9SB28et2JCXaro0V56KzKv4w9Qd2LCe8Xv0UGUVgQirXeU
/DE9KkbyNn1rRVpVD0/kBzLh6A5H431Yf9L00FzbF8yEU23HD6li/UvjZ/79
vQ+YoN/Wvch424r+uxIVKhPFhILx1ySnyFa0o0QvUiyNCQSRhzeyL7Qikcvr
+s/TmeBDOPFOx6AVCfOUbhZ5xwS1cIOFOmhF/PbyT4RysfX4yGqRqq2IayNX
LF8hE951rbfObGtFNHNcAmcdE4L2JD62bmtB9PePvMsbmOBmqVn7o7YFsVaN
DLybmfBccnLzpooWxJfdu9b7C1v/U/2afi52PixOXc3vZ8LBnmh89P0W5JQs
qm1KY8J1Hs9t8vtaUEeP59QbyWXw7b24S+1qMyIqqtab7VqG/pV2CSe7ZjR8
b+ntZpllkFI+2RZwvhnNyIda3ti7DLYKsiU2h5sRT8Bz3BnVZTD+sLyRvd6E
ToniXkzrLQP09fKQ45pQsaXo6eM3lmHYwoQn720jShQMmUC3lmH09ddW7oRG
dLN54ql+4DKIWjpymD9sRIdO/uwzv7sMt3P6BUquNKJCeVdf30fLwEdkraYq
NqLP/wpTslKWAaWESwh8akAfEozn+GuWQe3I4Med+fUoqy38DVl4Ba6fXZCK
vFmLYg+t2r8VXQFastslm8u1KPD5TSl78RUY6a2S22lUi846OL/u3bUCs7Zt
VTdlaxF1RjulSXEF3rwtNfVpr0HH+FaSP2uvgOFklli+Yg1qM/KLveO5AnOO
kVbcnTjEaLS/K1yzAg/l90MY+wciJaClbb6rkCWn2aFiVIjonSckHgqsYfel
u39lJ5KRX7IcLvjnGvg0fZNRTn0FZs9drnGhNVheJcc+O5ECGi8yhZ9Wr0H+
L3Jt7mAKrLyUc8toWIPba3O3qLtew6PXcryNHWvwSsBEtiftDaRmylmI/FmD
B0l1ajV676CuUG7iM/86rARwfQsSyYUdbXLbxi6vA+vd9oYs+S9wbKnnn5Pz
OnAGNApGeHwBm12PiUOu68Cbf/jcoYIvkOoznU70WAe/Gtup2xKFIC1QotJ6
cx3Mp9wYnG8LQcFE71xx5Dq4h5ndVcwpAo3Oq5Ghn9fBMdenWPLNV7BalvBc
L1yH0qg+zU8/vkKgLP78na/r4BzP47dn4Ct8u6Eq6v9tHWy39T6rECsBLeHl
rKs165AerxmYEFcCZ8yjqy8Q1iHIV7i343YpmPcWrEmx1uFY7fxdkaPl8OC9
90o7BwvE04xPgEU55AUrMx9ysSDzZfA/vRvlsLar4N8EDwuKj5Ss/f1QDrnu
H6dKtrOAM2XpVIDUN1hh5PcZ72cB9c7cpyLmN8iUfF9yz4IFNoJSEcrPKwA/
41580JoF/AnG9sWfKoBRpVBItmXB6Msbq0INFWDsmvvxrCMLKNtHLC7TK4D+
MSdTxJMFTOH8qf2WP8DoZHZ8QQgLtOo3L4Ru/QkLju+8Bz+wYPeYZ9WAXSUs
vdyk4fyJBYFSv0YO+VQCs/3a+p8vLGAYdgS6h1QCG9TiaCUssBrcOXU1qxL4
ZGq/cCIWaCw+V26drIS9pLEFxW4WvNog2MbvVwWK4oY/PvWy4P4RVevjoVWg
bPopXK2PBcazv5mn4qtADRcgojXEguS7h/ymvlSBdgb3EZNxFtjXqJe8nK0C
GyfF4IBVFpA5pA45uSC49Cr21Mo6C3CFTy5c8kNwuWNuSwgHGzznthkefoDA
Ted7atQmNiQ4ZLcGpyC4KWP087UgG/jzxFqcfiGIJXmxq/ewgafSPq1FHAfP
xDsa9RXY0CDtnfNZGgeJpurxrYps8F++IhQmj4MU3JpMrwobfEuiheYP4iA3
46nuxFE2nLcqKl7XwwFy+vJIwJgNB0myRc2+OKho9z43fIENJ71pgbL+OCjT
VhL6fJENc1tYpq7BOCiQykk7b80GLmEFg5xwHKT2pX6NdWFDNu6iu9xLHLww
sAm2d2MD/d9uZstrHCSUiYKyBxtkrNw/OmTgICo5vqXVhw2JPX8enMrHQYBp
5ChvMBvG9aV3clXgwA+dfj9wlw3GKe7La5U48D6wwefDAzb4bBzgG63GgQvf
PaZhBBsE1LlGrjbjwLTphuCTZ2xw0zwW5UfEgfHRg702iWygGrPdfw7gwCB3
JlXxORvOiPI8XxjCgXbEVYWmVOz9/1pmd43h4D8dh5Obc9kwL7zK9qPhQOGL
JBcxjw2OHLwNggs4kJPua8r9yIYZlR+rrxZxIL5mZqFfxIZzmXxNnss4EPHa
JilWwoaYMurVr6s4EBxoG/lTxoZ9T+hP/q7jgPvbWa9HP9kgt8zjwcdZDZz7
uA9ZIjZsuC5xgM1VDevPa+nyNWwgHrkUPbipGhZvaT+sa2QDe/iJpPWWaqCR
Vw2SW9gg3KZtu8hbDVMXv/NfaWPDE97S0/f4qmH0oHoKVzcbUrwfqBkLVsNg
+vzl7l42aC/Y6iZvq4Y+/i/yWX1siPTcLNooVA3d97ynbv5mw5/syMIx4Wr4
Nb2/UHeYDRMqNMnZ7dXQYjceIDzKhqvgZ0cSqYb65uwTZAobigpNA6pEqwF3
zGVD8V82vP5LvfFYrBp+vt/dGDaJ5VstzurEjmr4JjYUe3GGDbQX5koDGH99
lGomS2MDhd/4n6t4NXxetBafn2fDJjn3b30Yf3AVHcYtsiFkS0DoMYlqyOnq
yopnsCFCwdUsHOOMU/HXnFbYUEA/pPEd47TC8wdV19ngwLlycADjl7u3LrHZ
WD3gpwz/Yvw/grB8dA==
"]]}, {
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVl3k4lN8bxq3ZWqSIQpIke0ISHlFCiCS7lAjJFokoS7asoW9IyDJSQhIl
nAlZyr4NYuyyz1hnCPN7f/9wfa73Pc97nvu+n3OuOXbb7Zo9Ax0d3U3sz///
69pPd+Bn7NXcAyS7aTQS/C28cXuY7yJs8Le+m1ojAQ9HT+xnvuvQYHIWXzpH
AulzB3Pf8N0BvbPHBVgIJFBuP1OcwOcFT5tdzMMLSIB/XasQw/cMAiXbL+42
JkFIUNSj53xJcJtfJWkwdhGq+R3KblQkgVzL7sShoEWglquvClu+hFon/L4m
r0VwWVxz+572HzjaFMzdtFiE65a2d+ePpoBjYOTueJFFEFVQuGEgmg6SAVXr
nF8W4I4XiS+SLwfsd2jnDBrm4Qxjgl+Jew5E62h9DymbB4YE+T9/GnKgbWhv
f3buPGQU+aZJP8yFOwwPPXJC5mFglvFodycO3jgzN71Xm4ert3hFjkbnw2XN
qOKZ4jlQNrgg/WWnEKxuZ6gIhM8Ca5LOW/JSKfi9GJP5Tj8N5e1yly8LIhit
2DIJbh4Ds5DBgdqoOpjXVuPXrR8At08PpJJXmyCYQb6q9korLMf3NtLTt8Fx
wfNsv4+XQqXLJ5jgaYNf852FvwI+Q7h2dFm9ZBsMpFBUT/SVAD+dRk6UWRv8
x+N4ZCHmE1xy+/iUu7gNWt8ren349xGaRTVeJ8m0w9xcxfNFYjYIMfNde0ds
h8kL+JTf51Sh8Uc9alPphEcW8pdbLpUgXPPWRMzlThjNKL+2u60EhRLk2PWu
dYJGRqfHgOlnpLGQfr3xbif8evOkQtixFFXy+szgEzpBQveYrmVIGSp2O3mg
ZLoTBE8VaEvlVKBkgQiHpKQu8D6dsIq0fqCHYtVR1zK6IGs51H/Psx/I5Mxq
Mef7LijsFPQS/PEDcenY/otGXTDuXXjpuXINivZSig+d7QJxd/qYMPFaFPh7
+ttD9W7g6iam/NupQ06+OnvM57vBo0zCWcm3Eb0/st/aZr0bVIqspKU/NKL5
qr4CO7oeMM5L7p8fbESuDI56rgd74AD9amEdNCGvqLCoEJUeeC3P/neQ4Rd6
+qaWrTC6B9opVRM5T36jlz9UdzFK9UL9vqYrunqtqNeO+Qbr2V5I1JqTvOzT
inh3teTuudALB/1pZRxZrShV1+oSr0kv2C92fpxbb0WZXX7PpAJ6IUntc+Su
9Db0YbKcwaylF7iunp7tcG9HP9jkaAX3CZBeEP36TEYHErsuW/78EQGc1rjs
P5R0oPh0aTfHEALckzQZoq/vQLZnJIaPpxAgUunjoO58B9qxEkGpdQQYf6lw
Wv9sJ1Iu5nkacaQPKl/feXqwoRNlbR486yDaB24fJdt9+joR26UDJM3TfdAi
sTD7baYT9fXvu0nT6oNTHUefD3B0IR9GNnjo2Qe36hOaYgy6UOmNfzt2TX0Q
rv49AbV0If63G2UXuvvANapeav9QFwqZo7geHe4DRZexjgvzXeha4CpxYLUP
fK+16qizdyNy/kK1kVA/cBm4x5Vc7EZS28NPwKcfXtG/eeXxuRvhsut2Dp8Y
AEfJsyGRj3qQe+j1UZAZgH4tmhF7SA86f3ei9s65AVB8zibhFtOD2sWZIgv1
B2BNIp1v8m0P2vikeUDj4QAYHR6qCm7qQXr4mpNODQPQ1RbHHX2gF/FkXWOP
7cCej8qcMeLvRaMhY/MlfwbgZszpwU2RXvTwMkPJFmkAFhdxK/8UelFm6wWV
eN4/wOAkLl92oxetDOINy53+gHN7+dEDib2outrwzOCDP+AdFKdxIrUXRWSO
cNM/+QMuIUnh/G97Ef8duj+6CX9gOPRjZkVhL9KaA3tixR94dPe0TFljL+Js
abvM+PMPFO37F7zc2ov+FN4UF2v7A+/iWPQO9vQid8+nJI/xP3B2aNaRdbQX
pW5U+zLvHoTkJ8dpnym96M4fAytxnkE4cbFWSmC7F8lUEdWuCg1C/un0Uy4M
BFQXuMOYIj8InIz3yr7vJqAFFrVYSetBcJtVdhAWIqCvMy3uRncHQWONTf27
CAEF/7Y2fugxCH5Hf2gqnyIgnrgAXnzoIHwaT6HOniYgdZ6qLOPCQYikVjvx
ahAQ00tut0tfB2GBOWhXxyUCajzgev5szSCoajFJeugQ0NX9R7sP9w4Cu66h
uqMhAXHF+2TuHhmExz0/tJAxAfXubXfZmRkEn41LzDs3CMhmdxDz2PYg7OMI
HZCzJiDhqP6OLpYhIPo4sJ2yJaBJNrn0n/uHQNMoT4jFjoBcWMYV808MweBB
tXOPHQnoMcMlR3f9ISBndblc9CQgtaA38rdNh4Bn1VTpsRcBMdCt012/NQSm
PiVXUx8S0PNtXMpZ7yF4FIdPeuFHQAb+NPtTT4dAeJJx0MmfgPb/M5U7EjkE
THUqWeJPCCiZyvp7J20I2h/rD9sHEZCVz61XZNwQlMuJuY8EE5DQ+je7seIh
MGfa+az5jIAmvLhkuyuGYKVwpTwulIDyVpy3ftYNwbnZ85F1YQTk7FnbWN46
BHzXDimMhROQ9NKRl/l9QxBg1N04HUFAy25et16PDcH+PW1GfZEEVLbYLBUz
PwQ0fY+h4ucE5Hf/xOaT9SH46iLn6xmF9TsfUO9OR4Sy86/kBKKxfu/1Jtxm
J4Lq8ulDnzD+OSN98/pBIggfypKXjiGgCMdwCS1BIkTdS0pOwljv7zDlrBgR
qnpqDCcw5nRQqjslR4S+K6vOArEE1D0RH39EhQhZ1VurgHGy3YzVHi0i6DNV
bV3B2GrswinaVSJcrBWOv4Cx0K3UNbI5EeatxKqEMB4fXv4xZkcEr77uFzNY
fZzNldju+0TIbDnPn4ax81C2Rb0PERKuBjgrYSxttSX6NYgIGYSfz6ux/S8P
XF/JjyLCQVmDKGmMy8w/otcvibD3pqVfBNa/Xx9zdEwGEa68UHNoxvRRM7Ux
e5pPhB0mE+tNTD/63jIRj8/Y/ldZXLkwrru+b+l2FRE6g5pxBzG9I7ruVl1v
IIJI5nEeeswPzg7eG0p/iBC40dCZjPnZfdVDWHySCFd9jFQvhhDQq9amxSMk