-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnotations.tex
112 lines (100 loc) · 4.45 KB
/
notations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
%%% Packages for notations
\usepackage{amsmath}
\usepackage{upgreek}
%%% Notations not in the table
% Slanted leq and geq
\let\leq=\leqslant
\let\geq=\geqslant
%%% Spaces
% Real space
\newcommand{\RR}{\mathbb{R}}
% Orthogonal group
\newcommand{\OO}{\mathrm{O}}
% Cyclic group
\newcommand{\ZZ}{\mathbb{Z}}
% Dihedral group
\newcommand{\DD}{\mathbb{D}}
%%% Operators
% Deviatoric part
\newcommand{\dev}[1]{#1'}
%%% Constants
% Zeros
\newcommand{\zero}{\mathbf{0}}
% Identities
\newcommand{\id}[1]{%
\ifnum2=#1\relax
\mathbf{1}
\else
\ifnum4=#1\relax
\mathbf{I}
\else
\textcolor{red}{\text{ERROR}}
\fi
\fi}
% Deviatoric projector
\newcommand{\J}{\mathbf{J}}
%%% Continuous model
% Damage
\newcommand{\dam}{\mathbf{D}}
% Elasticity tensor
\newcommand{\ela}{\mathbf{E}}
% Effective elasticity tensor
\newcommand{\elaeff}{\tilde{\mathbf{E}}}
%%% Harmonic decomposition
% Dilatation tensor
\newcommand{\dil}{\mathbf{d}}
% Harmonic part
\newcommand{\har}{\mathbf{H}}
%%% List of Symbols
\newcommand{\listnotationsname}{List of Symbols}
\newcommand{\listofnotations}{
\chapter*{\listnotationsname}%
\label{cha:list_of_symbols}
\subsection*{Spaces}%
\label{sec:Spaces}
\vspace{-1em}
\begin{longtable}{p{0.1\textwidth} p{0.85\textwidth}}
\( \RR \) & Real space \\[0.5em]
\( \ZZ_{n} \) & Cyclic group of order $n$ \\[0.5em]
\( \DD_{n} \) & Dihedral group of order $2n$ (group of $n$-gon symmetries) \\[0.5em]
\( \OO(n) \) & Orthogonal group of dimension $d$ \\[0.5em]
\end{longtable}
\vspace{-2em}
\subsection*{Operators}%
\label{sec:Operators}
\vspace{-1em}
\begin{longtable}{p{0.1\textwidth} p{0.85\textwidth}}
\( \dev{\bullet} \) & Deviatoric part of second-order tensor $\bullet$ \\[0.5em]
\( \otimes \) & Tensor product \\[0.5em]
\end{longtable}
\vspace{-3em}
\subsection*{Constants}%
\label{sec:Constants}
\vspace{-1em}
\begin{longtable}{p{0.1\textwidth} p{0.85\textwidth}}
\( \zero \) & Null tensor \\[0.5em]
\( \id{2} \) & Second-order identity tensor \\[0.5em]
\( \id{4} \) & Fourth-order identity tensor \\[0.5em]
\( \J \) & Deviatoric projector (4th-order tensor) \\[0.5em]
\end{longtable}
\vspace{-2em}
\subsection*{Continuous variables}%
\label{sec:Continuous variables}
\vspace{-1em}
\begin{longtable}{p{0.1\textwidth} p{0.85\textwidth}}
\( \dam \) & Damage tensor \\[0.5em]
\( \ela \) & Elasticity tensor \\[0.5em]
\( \ela_0 \) & Initial elasticity tensor \\[0.5em]
\( \elaeff(\dam) \) & Effective elasticity tensor \\[0.5em]
\end{longtable}
\vspace{-2em}
\subsection*{Harmonic decomposition}
\label{sec:hamronic_decomposition}
\vspace{-1em}
\begin{longtable}{p{0.1\textwidth} p{0.85\textwidth}}
\( \mu \) & Shear modulus \\[0.5em]
\( \kappa \) & Bulk modulus \\[0.5em]
\( \dil \) & Dilatation tensor \\[0.5em]
\( \har \) & Harmonic part \\[0.5em]
\end{longtable}
}