forked from szl0072/Leetcode-Solution-Code
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBurstBalloons.java
76 lines (61 loc) · 2.07 KB
/
BurstBalloons.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
package leetcode;
/**
* Project Name : Leetcode
* Package Name : leetcode
* File Name : BurstBalloons
* Creator : Edward
* Date : Jan, 2018
* Description : 312. Burst Balloons
*/
public class BurstBalloons {
/**
* Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on
* it represented by array nums. You are asked to burst all the balloons.
* If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins.
* Here left and right are adjacent indices of i. After the burst,
* the left and right then becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
Note:
(1) You may imagine nums[-1] =å nums[n] = 1. They are not real therefore you can not burst them.
(2) 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100
Example:
Given [3, 1, 5, 8]
Return 167
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
i j
1 3 1 5 8 1
3 1 8
1 5 1
dp[i][j]为打破的气球为i~j之间
dp[i][j] = max(dp[i][j], dp[i][x – 1] + nums[i – 1] * nums[x] * nums[j + 1] + dp[x + 1][j]);
1 for
2 dfs + memo
time : O(n^3)
space : O(n^2)
[3, 1, 5, 8]
1 3 1 5 8
* @param nums
* @return
*/
public int maxCoins(int[] nums) {
int n = nums.length;
int[] arr = new int[n + 2];
for (int i = 0; i < n; i++) {
arr[i + 1] = nums[i];
}
arr[0] = arr[n + 1] = 1;
int[][] dp = new int[n + 2][n + 2];
return helper(1, n, arr, dp);
}
private int helper(int i, int j, int[] nums, int[][] dp) {
if (i > j) return 0;
if (dp[i][j] > 0) return dp[i][j];
for (int x = i; x <= j; x++) {
dp[i][j] = Math.max(dp[i][j], helper(i, x - 1, nums, dp)
+ nums[i - 1] * nums[x] * nums[j + 1]
+ helper(x + 1, j, nums, dp));
}
return dp[i][j];
}
}