forked from RBTV1/SWE-GNN-paper-repository-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yaml
86 lines (76 loc) · 3.56 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# dataset creation parameters
dataset_parameters:
database_folder: 'database/datasets' # datasets location
temporal_res: 60 # temporal resolution
train_size: 80 # training set size
val_prcnt: 0.25 # percentage of validation sample from training dataset
test_size: 10 # choose from: value(1,20), 'random_breach', 'big'
seed: 111 # seed for randomness in training/validation split
# Scaler options: null, 'minmax', 'minmax_neg', or 'standard'
# CURRENTLY THEY ARE NOT USED SO THEY MIGHT GIVE ERRORS BUT IF YOU WANT TRY THEM!
scalers:
DEM_scaler : null
slope_scaler : null
WD_scaler : null
V_scaler : null
# node features
selected_node_features :
slope_x : True # slope in x-direction
slope_y : True # slope in y-direction
area : False # cell area
DEM : True # cell elevation
# edge features
selected_edge_features :
cell_length : True # edge length
normal_x : True # unit outward normal x-direction
normal_y : True # unit outward normal y-direction
# temporal training dataset
temporal_dataset_parameters:
rollout_steps : 8 # number of steps ahead during training
previous_t : 2 # input previous time steps
time_start : 1 # starting time step (default 1)
time_stop : -1 # ending time step (if -1 you take the full simulation)
# TO SELECT BETWEEN MODELS COMMENT/UNCOMMENT THE BLOCKS BELOW
# Models hyperparameters
models:
model_type : 'GNN'
type_GNN : "SWEGNN" # options: 'SWEGNN', 'SWEGNN_ng', 'GAT', 'GNN_L'
hid_features : 64 # num hidden features / embedding dimension
K : 8 # num GNN layers
gnn_activation : 'tanh' # final activation after GNN layers
dropout : 0
mlp_layers : 2 # parameters MLP in the SWEGNN (cfr. eq.7)
mlp_activation : 'prelu' # parameters MLP in the SWEGNN (cfr. eq.7)
seed : 4444 # model seed for reproducibility in initial model parameters
with_filter_matrix: True # Add trainable weight matrix in eq. 8
with_gradient : True # Add h_j - h_i gradient term in eq. 7
with_WL : True # Include water levels in static attributes
# model_type : 'MLP'
# hid_features : 256
# n_layers : 4
# activation : 'relu'
# dropout : 0
# seed : 42
# model_type : 'CNN'
# initial_hid_dim : 64
# n_downsamples : 3
# activation : 'prelu'
# seed : 42
trainer_options:
type_loss : 'RMSE' # 'RMSE' or 'MAE'
only_where_water : True # Calculate loss only where there's water
batch_size : 8 # batch size
velocity_scaler : 3 # weighting coefficient for velocity in loss (eq. 14)
curriculum_epoch : 15 # number of epochs before updating curriculum strategy
patience : 30 # patience for early stopping
max_epochs : 150 # maximum number of epochs
report_freq : 5 # frquency to report loss in print
# learning rate (optimizer parameters)
lr_info:
learning_rate : 0.007 # learning rate
weight_decay : 0 # weight decay
gamma : 0.9 # Parametrs for learning rate scheduler
step_size : 7 # Parametrs for learning rate scheduler
temporal_test_dataset_parameters:
time_start : 1
time_stop : -1