-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwgan_proto_sel.py
250 lines (197 loc) · 11.3 KB
/
wgan_proto_sel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from __future__ import print_function
import os, os.path
import tensorflow as tf
import sys
import random
import argparse
import util
import numpy as np
from random import shuffle
import classifier
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
def leaky_relu(x, alpha=0.2):
return tf.nn.relu(x) - alpha * tf.nn.relu(-x)
def generator(x, opt, name="generator", reuse=False, isTrainable=True):
with tf.variable_scope(name) as scope:
if reuse:
scope.reuse_variables()
net = tf.layers.dense(inputs=x, units=opt.ngh,
kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.02),
activation=leaky_relu, name='gen_fc1', trainable=isTrainable, reuse=reuse)
net = tf.layers.dense(inputs=net, units=opt.resSize,
kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.02),
activation=tf.nn.relu, name='gen_fc2', trainable=isTrainable, reuse=reuse)
return tf.reshape(net, [-1, opt.resSize])
def discriminator(x, opt, name="discriminator", reuse=False, isTrainable=True):
with tf.variable_scope(name) as scope:
if reuse:
scope.reuse_variables()
net = tf.layers.dense(inputs=x, units=opt.ndh,
kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.02),
activation=leaky_relu, name='disc_fc1', trainable=isTrainable, reuse=reuse)
real_fake = tf.layers.dense(inputs=net, units=1,
kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.02),
activation=None, name='disc_rf', trainable=isTrainable, reuse=reuse)
return tf.reshape(real_fake, [-1])
def next_feed_dict(data, opt):
batch_feature, batch_label, batch_att, batch_proto = data.next_batch(opt.batch_size)
z_rand = np.random.normal(0, 1, [opt.batch_size, opt.nz]).astype(np.float32)
return batch_feature, batch_att, batch_label, batch_proto, z_rand
def wgan_proto_sel(opt, data):
# graph1 definition
g1 = tf.Graph()
with g1.as_default():
# placeholders
input_res = tf.placeholder(tf.float32, [None, opt.resSize], name='input_features')
input_proto = tf.placeholder(tf.float32, [None, opt.resSize], name='input_feature_prototypes')
input_att = tf.placeholder(tf.float32, [None, opt.attSize], name='input_attributes')
noise_z = tf.placeholder(tf.float32, [None, opt.nz], name='noise')
input_label = tf.placeholder(tf.int32, [None], name='input_label')
# model definition
train = True
reuse = False
# input of generator
noise = tf.concat([noise_z, input_att], axis=1)
# output of generator
gen_res = generator(noise, opt, isTrainable=train, reuse=reuse)
gen_res = gen_res + input_proto
# input of discriminator
targetEmbd = tf.concat([input_res, input_att], axis=1)
genTargetEmbd = tf.concat([gen_res, input_att], axis=1)
# output of discriminator
targetDisc = discriminator(targetEmbd, opt,isTrainable=train,reuse=reuse)
genTargetDisc = discriminator(genTargetEmbd, opt,isTrainable=train, reuse=True)
# discriminator loss
discriminatorLoss = tf.reduce_mean(genTargetDisc - targetDisc)
alpha = tf.random_uniform(shape=[opt.batch_size, 1], minval=0., maxval=1.)
interpolates = alpha * input_res + ((1 - alpha) * gen_res)
interpolate = tf.concat([interpolates, input_att], axis=1)
interpolate_disc = discriminator(interpolate, opt, reuse=True,isTrainable=train)
gradients = tf.gradients(interpolate_disc, [interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
gradientPenalty = tf.reduce_mean((slopes - 1.) ** 2)
gradientPenalty = opt.lambda1 * gradientPenalty
discriminatorLoss = discriminatorLoss + gradientPenalty
# Wasserstein generator loss
genDiscMean = tf.reduce_mean(genTargetDisc)
genLoss = -genDiscMean
generatorLoss = genLoss
# getting parameters to optimize
discParams = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator')
generatorParams = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator')
for params in discParams:
print(params.name)
print('...................')
for params in generatorParams:
print(params.name)
print('...................')
discOptimizer = tf.train.AdamOptimizer(learning_rate=opt.lr, beta1=opt.beta1, beta2=0.9)
genOptimizer = tf.train.AdamOptimizer(learning_rate=opt.lr, beta1=opt.beta1, beta2=0.9)
discGradsVars = discOptimizer.compute_gradients(discriminatorLoss, var_list=discParams)
genGradsVars = genOptimizer.compute_gradients(generatorLoss, var_list=generatorParams)
discTrain = discOptimizer.apply_gradients(discGradsVars)
generatorTrain = genOptimizer.apply_gradients(genGradsVars)
# training g1 graph
with tf.Session(graph=g1, config=config) as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(max_to_keep=100)
best_acc = 0
syn_res = np.empty((0, opt.resSize), np.float32)
syn_label = np.empty((0), np.float32)
classifier_zsl = classifier.CLASSIFICATION2(syn_res, syn_label, data,
data.ntest_class, opt.modeldir + '_classifier_zsl', opt.lr_cls,
0.5, opt.nepoch_cls, opt.bs_cls)
for epoch in range(opt.nepoch):
# train discriminator and generator
for i in range(0, data.ntrain, opt.batch_size):
for j in range(opt.critic_iter):
# train discriminator
batch_feature, batch_att, batch_label, batch_proto, z_rand = next_feed_dict(data, opt)
_, discLoss = sess.run([discTrain, discriminatorLoss],
feed_dict={input_res: batch_feature, input_att: batch_att,
input_label: batch_label, input_proto:batch_proto, noise_z: z_rand})
print("Discriminator loss is:" + str(discLoss))
# train generator
batch_feature, batch_att, batch_label, batch_proto, z_rand = next_feed_dict(data, opt)
_, genLoss = sess.run([generatorTrain, generatorLoss],
feed_dict={input_att: batch_att, input_proto: batch_proto,
input_label: batch_label, noise_z: z_rand})
print('epoch:', epoch, "Generator loss is:" + str(genLoss))
# synthesis feature of unseen classes
syn_res = np.empty((0, opt.resSize), np.float32)
syn_label = np.empty((0), np.float32)
for i,c in enumerate(data.unseenclasses):
iclass_att = np.reshape(data.attribute[c], (1, opt.attSize))
iclass_proto = np.reshape(data.test_unseen_proto[i],(1, opt.resSize))
batch_att = np.repeat(iclass_att, [opt.syn_num], axis=0)
batch_proto = np.repeat(iclass_proto, [opt.syn_num], axis=0)
z_rand = np.random.normal(0, 1, [opt.syn_num, opt.nz]).astype(np.float32)
syn_features = sess.run(gen_res, feed_dict={input_att: batch_att, input_proto:batch_proto, noise_z: z_rand})
syn_res = np.vstack((syn_res, syn_features))
temp = np.repeat(i, [opt.syn_num], axis=0)
syn_label = np.concatenate((syn_label, temp))
# shuffle the data
idx = range(0, syn_label.shape[0])
shuffle(idx)
syn_res = syn_res[idx, :]
syn_label = syn_label[idx]
# generated feature evaluation
# train model
classifier_zsl.train_X = syn_res
classifier_zsl.train_Y = syn_label
acc_tr = classifier_zsl.fit_zsl()
print('ZSL training: unseen class accuracy= ', acc_tr)
if acc_tr > best_acc:
best_acc = acc_tr
saver.save(sess, os.path.join(opt.modeldir, 'best_acc.ckpt'))
print('best_acc', best_acc)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# about data
parser.add_argument('--dataset', default='APY', help='AWA1')
parser.add_argument('--dataroot', default='../data/xlsa17/data', help='path to dataset')
parser.add_argument('--image_embedding', default='res101')
parser.add_argument('--class_embedding', default='att')
parser.add_argument('--select', type=bool, default=True)
parser.add_argument('--resSize', type=int, default=1024, help='size of visual features')
parser.add_argument('--attSize', type=int, default=64, help='size of semantic features')
parser.add_argument('--preprocessing', default=True, help='enbale MinMaxScaler on visual features')
# about architecture
parser.add_argument('--nz', type=int, default=64, help='size of the noise latent z vector')
parser.add_argument('--ngh', type=int, default=4096, help='size of the hidden units in generator')
parser.add_argument('--ndh', type=int, default=4096, help='size of the hidden units in discriminator')
# about training wgan
parser.add_argument('--batch_size', type=int, default=512, help='input batch size')
parser.add_argument('--nepoch', type=int, default=5, help='number of epochs to train GAN')
parser.add_argument('--critic_iter', type=int, default=5, help='critic iteration, following WGAN-GP')
parser.add_argument('--lambda1', type=float, default=10, help='gradient penalty regularizer, following WGAN-GP')
parser.add_argument('--lr', type=float, default=0.00005, help='learning rate to train GANs ')
parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.5')
parser.add_argument('--modeldir', default='./APY_proto1024_model', help='folder to output model checkpoints')
parser.add_argument('--manualSeed', type=int, default=1, help='manual seed')
parser.add_argument('--val_interval', type=int, default=1, help='interval to test the accuracy of classification')
# generate feature
parser.add_argument('--syn_num', type=int, default=2000, help='number features to generate per class')
# evaluate feature
parser.add_argument('--nepoch_cls', type=int, default=40, help='number of epochs to train cls')
parser.add_argument('--bs_cls', type=int, default=128, help='number features to generate per class')
parser.add_argument('--lr_cls', type=float, default=0.0002, help='learning rate to train classifier ')
opt = parser.parse_args()
print(opt)
# set random seed
random.seed(opt.manualSeed)
tf.set_random_seed(opt.manualSeed)
if not os.path.exists(opt.modeldir):
os.makedirs(opt.modeldir)
# data reading
data = util.DATA_LOADER_sel(opt)
print("#####################################")
print("# of training samples: ", data.ntrain)
print(data.seenclasses)
print(data.unseenclasses)
print(data.ntrain_class)
print(data.ntest_class)
print("#####################################")
# train GAN
wgan_proto_sel(opt, data)