forked from chendaichao/Hilbert-Huang-transform
-
Notifications
You must be signed in to change notification settings - Fork 1
/
hht.py
260 lines (220 loc) · 10.8 KB
/
hht.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import torch, math
from .frequency import get_envelope_frequency
from .interpolation1d import _Interpolate
def find_IMF(x,
num_sifting : int = 10,
thres_num_extrema : int = 2):
'''
Extracting an intrinsic mode function using the sifting process.
Parameters:
-------------
x : Tensor, of shape (..., # sampling points )
Signal data.
num_sifting : int, optional.
The number of sifting times.
( Default : 10 )
thres_num_extrema : int, optional
If (#maxima in `x`) or (#minima in `x`) <= `thres_num_extrema`, `x` will be
considered as a signal residual and thus an all-zero function will be the resulting IMF.
( Default: 2 )
Returns:
-------------
imf : Tensor, of shape (..., # sampling points)
The extrated intrinsic mode functions for each signal.
It will be on the same device as `x`.
'''
assert num_sifting > 0, "The number of sifting times should be at least one."
x = torch.as_tensor(x).double()
device = x.device
N = x.shape[-1]
batch_dim = x.shape[:-1] # the batch dimensions
x = x.view(-1, N)
batch_num = x.shape[0] # the number of batches
is_residual = torch.zeros(batch_num, dtype = torch.bool, device = device)
evaluate_points = (torch.arange(N, device = device).view(1, -1) + \
(2 * N) * torch.arange(batch_num, device = device).view(-1, 1)).view(-1)
for _ in range(num_sifting):
# constructing the envelope by interpolation using cubic Hermite spline
tmp, tmpleft, tmpright = x[..., 1:-1], x[..., :-2], x[..., 2:]
# ---- the upper envelope ----
maxima_bool = torch.cat( ( (x[..., 0] >= x[..., 1]).view(-1, 1),
(tmp >= tmpright) & (tmp >= tmpleft),
(x[..., -1] >= x[..., -2]).view(-1, 1),
torch.ones((batch_num, 1), dtype = torch.bool, device = device)
), dim = 1 )
is_residual.logical_or_( maxima_bool.sum(dim = -1) - 1 <= thres_num_extrema)
maxima = maxima_bool.nonzero(as_tuple = False).double()
zero_grad_pos = (maxima[:, 1] < N).logical_not()
x_maxima = torch.zeros(maxima.shape[0], device = x.device, dtype = x.dtype)
x_maxima[zero_grad_pos.logical_not()] = x[maxima_bool[:, :N]]
del maxima_bool
maxima[zero_grad_pos, 1] = N + (N-1)/2
maxima = maxima[:, 1] + maxima[:, 0] * 2 * N
maxima = torch.cat( (torch.tensor(-(N+1)/2, device = device).view(1), maxima) )
x_maxima = torch.cat( (torch.tensor(0, device = device).view(1), x_maxima) )
zero_grad_pos = torch.cat( (torch.tensor(0, device = device).view(1), zero_grad_pos) )
envelope_up = _Interpolate(maxima, x_maxima, evaluate_points, zero_grad_pos).view(batch_num, -1)
del maxima, x_maxima, zero_grad_pos
# ---- the lower envelope ----
minima_bool = torch.cat( ( ( x[..., 0] <= x[..., 1]).view(-1, 1),
(tmp <= tmpright) & (tmp <= tmpleft),
(x[..., -1] <= x[..., -2]).view(-1, 1),
torch.ones((batch_num, 1), dtype = torch.bool, device = device)
), dim = 1 )
is_residual.logical_or_( minima_bool.sum(dim = -1) - 1 <= thres_num_extrema)
del tmp, tmpleft, tmpright
minima = minima_bool.nonzero(as_tuple = False).double()
zero_grad_pos = (minima[:, 1] < N).logical_not()
x_minima = torch.zeros(minima.shape[0], device = x.device, dtype = x.dtype)
x_minima[zero_grad_pos.logical_not()] = x[minima_bool[:, :N]]
del minima_bool
minima[zero_grad_pos, 1] = N + (N-1)/2
minima = minima[:, 1] + minima[:, 0] * 2 * N
minima = torch.cat( (torch.tensor(-(N+1)/2, device = device).view(1), minima) )
x_minima = torch.cat( (torch.tensor(0, device = device).view(1), x_minima) )
zero_grad_pos = torch.cat( (torch.tensor(0, device = device).view(1), zero_grad_pos) )
envelope_down = _Interpolate(minima, x_minima, evaluate_points, zero_grad_pos).view(batch_num, -1)
del minima, x_minima, zero_grad_pos
# sift and obtain an IMF candidate
x = x - (envelope_up + envelope_down) / 2
x[is_residual] = 0
return x.view(batch_dim + torch.Size([N]))
def emd(x,
num_imf : int = 10,
ret_residual : bool = False,
**kwargs):
'''
Perform empirical mode decomposition.
Parameters:
-------------
x : Tensor, of shape (..., # sampling points)
Signal data.
num_imf : int, optional.
The number of IMFs to be extracted from `x`.
( Default: 10 )
num_sifting , thres_num_extrema : int, optional.
See `help(find_IMF)`
ret_residual : bool, optional. ( Default: False )
Whether to return the residual signal as well.
Returns:
-------------
imfs if `ret_residual` is False;
(imfs, residual) if `ret_residual` is True.
imfs : Tensor, of shape ( ..., num_imf, # sampling points )
The extrated IMFs.
residual : Tensor, of shape ( ..., # sampling points )
The residual term.
'''
x = torch.as_tensor(x).double()
imfs = []
for _ in range(num_imf):
imf = find_IMF(x, **kwargs)
imfs.append(imf)
x = x - imf
imfs = torch.stack(imfs, dim = -2)
return (imfs, x) if ret_residual else imfs
def hilbert_huang(x, fs,
num_imf : int = 10,
**kwargs):
'''
Perform Hilbert-Huang transform on the signal `x`, and return the amplitude and
instantaneous frequency function of each intrinsic mode.
Parameters:
-----------
x : Tensor, of shape (..., # sampling points)
Signal data.
fs : real.
Sampling frequencies in Hz.
num_imf : int, optional.
The number of IMFs to be extracted from `x`.
( Default: 10 )
num_sifting , thres_num_extrema : int, optional.
See `help(find_IMF)`
Returns:
-----------
(imfs, imfs_env, imfs_freq) - 1
imfs : Tensor, of shape (..., num_imf, # sampling points)
IMFs obtained from `emd`.
imfs_env : Tensor, of shape (..., num_imf, # sampling points - 1)
The envelope functions of all IMFs.
imfs_freq :Tensor, of shape (..., num_imf, # sampling points - 1)
The instantaneous frequency functions of all IMFs, measured in 'Hz'.
'''
imfs = emd(x, num_imf = num_imf, **kwargs)
imfs_env, imfs_freq = get_envelope_frequency(imfs, fs, **kwargs)
return imfs, imfs_env, imfs_freq
def hilbert_spectrum(imfs_env, imfs_freq, fs,
freq_lim = None, freq_res = None,
time_range = None, time_scale = 1 ):
'''
Compute the Hilbert spectrum H(t, f) (which quantify the changes of frequencies of all IMFs over time).
Parameters:
------------
imfs_env : Tensor, of shape (..., # IMFs, # sampling points )
The envelope functions of all IMFs.
imfs_freq : Tensor, of shape (..., # IMFs, # sampling points )
The instantaneous frequency functions of all IMFs.
fs : real.
Sampling frequencies in Hz.
freq_max : real, Optional.
Specifying the maximum instantaneous frequency. If not given, it will be
automatically selected.
freq_res : real. Optional.
Specifying the frequency resolution.
If not given, it will be 1 / (total_time_length) = fs / N.
time_range : (real, real)-tuple. Optional.
Specifying the range of time domain. If not given, it will be the time span
of the whole signal, i.e. (0, N*fs).
time_scale : int. Optional. ( Default : 1 )
Specifying the scale for the time axis.
Thus temporal resolution will be exactly `1/fs * time_scale`.
Returns:
----------
(spectrum, time_axis, freq_axis)
spectrum : Tensor, of shape ( ..., # time_bins, # freq_bins ).
A pytorch tensor, representing the Hilbert spectrum H(t, f).
The tensor will be on the same device as `imfs_env` and `imfs_freq`.
time_axis : Tensor, 1D, of shape ( # time_bins )
The label for the time axis of the spectrum.
freq_axis : Tensor, 1D, of shape ( # freq_bins )
The label for the frequency axis (in `freq_unit`) of the spectrum.
'''
imfs_freq = imfs_freq.double()
imfs_env = imfs_env.double()
device = imfs_freq.device
N = imfs_freq.shape[-1] # total number of sampling points
T = N / fs # total time length
if (freq_lim is None):
freq_min, freq_max = 0, fs / 2
else:
freq_min, freq_max = freq_lim
if (freq_res is None):
freq_res = (freq_max - freq_min) / 200 # frequency resolution
dim_batch = imfs_env.shape[:-2]
num_imfs = imfs_env.shape[-2]
imfs_env = imfs_env.view(-1, num_imfs, N)
imfs_freq = imfs_freq.view(-1, num_imfs, N)
num_batches = imfs_env.shape[0]
if (time_range):
L, R = time_range
L, R = min(int(L * fs), N-1), min(int(R * fs)+1, N)
imfs_env, imfs_freq = imfs_env[..., L:R], imfs_freq[..., L:R]
N = R-L
freq_bins = int((freq_max - freq_min) / freq_res) + 1
time_bins = N // time_scale + 1
spectrum = torch.zeros( (num_batches, time_bins, freq_bins + 1), device = device )
batch_idx = (torch.arange(num_batches, dtype=torch.long, device=device)).view(-1, 1, 1)
time_idx = (torch.arange(N, dtype=torch.long, device=device) // time_scale).view(1, 1, -1)
freq_idx = ((imfs_freq - freq_min) / freq_res).long()
# out-of-range frequency values will be discarded later
freq_idx[ freq_idx < 0 ] = freq_bins
freq_idx[ freq_idx > freq_bins ] = freq_bins
spectrum[batch_idx, time_idx, freq_idx] += (imfs_env ** 2)
#spectrum = spectrum / freq_res * fs / time_scale (density spectrum)
del batch_idx, time_idx, freq_idx
time_axis = torch.arange(N // time_scale + 1, dtype=torch.double) * time_scale / fs \
+ (L / fs if time_range is not None else 0)
freq_axis = torch.arange(freq_bins, dtype=torch.double) * freq_res + freq_min
return ( spectrum[:, :, :freq_bins].view( dim_batch + torch.Size([time_bins, freq_bins]) ),
time_axis,
freq_axis )