forked from TheAlgorithms/Go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheditdistance.go
69 lines (53 loc) · 1.84 KB
/
editdistance.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
// EDIT DISTANCE PROBLEM
// https://www.geeksforgeeks.org/edit-distance-dp-5/
// https://leetcode.com/problems/edit-distance/
package dynamic
import "github.com/TheAlgorithms/Go/math/min"
// EditDistanceRecursive is a naive implementation with exponential time complexity.
func EditDistanceRecursive(first string, second string, pointerFirst int, pointerSecond int) int {
if pointerFirst == 0 {
return pointerSecond
}
if pointerSecond == 0 {
return pointerFirst
}
// Characters match, so we recur for the remaining portions
if first[pointerFirst-1] == second[pointerSecond-1] {
return EditDistanceRecursive(first, second, pointerFirst-1, pointerSecond-1)
}
// We have three choices, all with cost of 1 unit
return 1 + min.Int(EditDistanceRecursive(first, second, pointerFirst, pointerSecond-1), // Insert
EditDistanceRecursive(first, second, pointerFirst-1, pointerSecond), // Delete
EditDistanceRecursive(first, second, pointerFirst-1, pointerSecond-1)) // Replace
}
// EditDistanceDP is an optimised implementation which builds on the ideas of the recursive implementation.
// We use dynamic programming to compute the DP table where dp[i][j] denotes the edit distance value
// of first[0..i-1] and second[0..j-1]. Time complexity is O(m * n) where m and n are lengths of the strings,
// first and second respectively.
func EditDistanceDP(first string, second string) int {
m := len(first)
n := len(second)
// Create the DP table
dp := make([][]int, m+1)
for i := 0; i <= m; i++ {
dp[i] = make([]int, n+1)
}
for i := 0; i <= m; i++ {
for j := 0; j <= n; j++ {
if i == 0 {
dp[i][j] = j
continue
}
if j == 0 {
dp[i][j] = i
continue
}
if first[i-1] == second[j-1] {
dp[i][j] = dp[i-1][j-1]
continue
}
dp[i][j] = 1 + min.Int(dp[i][j-1], dp[i-1][j], dp[i-1][j-1])
}
}
return dp[m][n]
}