forked from TheAlgorithms/Go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkruskal.go
113 lines (86 loc) · 3.17 KB
/
kruskal.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
// KRUSKAL'S ALGORITHM
// https://cp-algorithms.com/data_structures/disjoint_set_union.html
// https://cp-algorithms.com/graph/mst_kruskal_with_dsu.html
package graph
import (
"sort"
)
type Vertex int
// Edge describes the edge of a weighted graph
type Edge struct {
Start Vertex
End Vertex
Weight int
}
// DisjointSetUnionElement describes what an element of DSU looks like
type DisjointSetUnionElement struct {
Parent Vertex
Rank int
}
// DisjointSetUnion is a data structure that treats its elements as separate sets
// and provides fast operations for set creation, merging sets, and finding the parent
// of the given element of a set.
type DisjointSetUnion []DisjointSetUnionElement
// NewDSU will return an initialised DSU using the value of n
// which will be treated as the number of elements out of which
// the DSU is being made
func NewDSU(n int) *DisjointSetUnion {
dsu := DisjointSetUnion(make([]DisjointSetUnionElement, n))
return &dsu
}
// MakeSet will create a set in the DSU for the given node
func (dsu DisjointSetUnion) MakeSet(node Vertex) {
dsu[node].Parent = node
dsu[node].Rank = 0
}
// FindSetRepresentative will return the parent element of the set the given node
// belongs to. Since every single element in the path from node to parent
// has the same parent, we store the parent value for each element in the
// path. This reduces consequent function calls and helps in going from O(n)
// to O(log n). This is known as path compression technique.
func (dsu DisjointSetUnion) FindSetRepresentative(node Vertex) Vertex {
if node == dsu[node].Parent {
return node
}
dsu[node].Parent = dsu.FindSetRepresentative(dsu[node].Parent)
return dsu[node].Parent
}
// unionSets will merge two given sets. The naive implementation of this
// always combines the secondNode's tree with the firstNode's tree. This can lead
// to creation of trees of length O(n) so we optimize by attaching the node with
// smaller rank to the node with bigger rank. Rank represents the upper bound depth of the tree.
func (dsu DisjointSetUnion) UnionSets(firstNode Vertex, secondNode Vertex) {
firstNode = dsu.FindSetRepresentative(firstNode)
secondNode = dsu.FindSetRepresentative(secondNode)
if firstNode != secondNode {
if dsu[firstNode].Rank < dsu[secondNode].Rank {
firstNode, secondNode = secondNode, firstNode
}
dsu[secondNode].Parent = firstNode
if dsu[firstNode].Rank == dsu[secondNode].Rank {
dsu[firstNode].Rank++
}
}
}
// KruskalMST will return a minimum spanning tree along with its total cost
// to using Kruskal's algorithm. Time complexity is O(m * log (n)) where m is
// the number of edges in the graph and n is number of nodes in it.
func KruskalMST(n int, edges []Edge) ([]Edge, int) {
var mst []Edge // The resultant minimum spanning tree
var cost int = 0
dsu := NewDSU(n)
for i := 0; i < n; i++ {
dsu.MakeSet(Vertex(i))
}
sort.SliceStable(edges, func(i, j int) bool {
return edges[i].Weight < edges[j].Weight
})
for _, edge := range edges {
if dsu.FindSetRepresentative(edge.Start) != dsu.FindSetRepresentative(edge.End) {
mst = append(mst, edge)
cost += edge.Weight
dsu.UnionSets(edge.Start, edge.End)
}
}
return mst, cost
}