forked from TheAlgorithms/Go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcyclic.go
129 lines (113 loc) · 2.71 KB
/
cyclic.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
package linkedlist
import "fmt"
// Cyclic Struct which cycles the linked list in this implementation.
type Cyclic[T any] struct {
Size int
Head *Node[T]
}
// Create new list.
func NewCyclic[T any]() *Cyclic[T] {
return &Cyclic[T]{}
}
// Inserting the first node is a special case. It will
// point to itself. For other cases, the node will be added
// to the end of the list. End of the list is Prev field of
// current item. Complexity O(1).
func (cl *Cyclic[T]) Add(val T) {
n := NewNode(val)
cl.Size++
if cl.Head == nil {
n.Prev = n
n.Next = n
cl.Head = n
} else {
n.Prev = cl.Head.Prev
n.Next = cl.Head
cl.Head.Prev.Next = n
cl.Head.Prev = n
}
}
// Rotate list by P places.
// This method is interesting for optimization.
// For first optimization we must decrease
// P value so that it ranges from 0 to N-1.
// For this we need to use the operation of
// division modulo. But be careful if P is less than 0.
// if it is - make it positive. This can be done without
// violating the meaning of the number by adding to it
// a multiple of N. Now you can decrease P modulo N to
// rotate the list by the minimum number of places.
// We use the fact that moving forward in a circle by P
// places is the same as moving N - P places back.
// Therefore, if P > N / 2, you can turn the list by N-P places back.
// Complexity O(n).
func (cl *Cyclic[T]) Rotate(places int) {
if cl.Size > 0 {
if places < 0 {
multiple := cl.Size - 1 - places/cl.Size
places += multiple * cl.Size
}
places %= cl.Size
if places > cl.Size/2 {
places = cl.Size - places
for i := 0; i < places; i++ {
cl.Head = cl.Head.Prev
}
} else if places == 0 {
return
} else {
for i := 0; i < places; i++ {
cl.Head = cl.Head.Next
}
}
}
}
// Delete the current item.
func (cl *Cyclic[T]) Delete() bool {
var deleted bool
var prevItem, thisItem, nextItem *Node[T]
if cl.Size == 0 {
return deleted
}
deleted = true
thisItem = cl.Head
nextItem = thisItem.Next
prevItem = thisItem.Prev
if cl.Size == 1 {
cl.Head = nil
} else {
cl.Head = nextItem
nextItem.Prev = prevItem
prevItem.Next = nextItem
}
cl.Size--
return deleted
}
// Destroy all items in the list.
func (cl *Cyclic[T]) Destroy() {
for cl.Delete() {
continue
}
}
// Show list body.
func (cl *Cyclic[T]) Walk() *Node[T] {
var start *Node[T]
start = cl.Head
for i := 0; i < cl.Size; i++ {
fmt.Printf("%v \n", start.Val)
start = start.Next
}
return start
}
// https://en.wikipedia.org/wiki/Josephus_problem
// This is a struct-based solution for Josephus problem.
func JosephusProblem(cl *Cyclic[int], k int) int {
for cl.Size > 1 {
cl.Rotate(k)
cl.Delete()
cl.Rotate(-1)
}
retval := cl.Head.Val
cl.Destroy()
return retval
}