-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-supervision.py
38 lines (29 loc) · 1.04 KB
/
test-supervision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import glob
import os
import config
import cv2
import tensorflow as tf
import supervision as sv
from ultralytics import YOLO
PERSON_CLASS = 0
CONFIDENCE = 0.5
print(f"Devices: {[device.device_type for device in tf.config.list_physical_devices()]}\n")
import models
model = models.get_main_model_data().model
video_path = glob.glob(os.path.join(config.VIDEOS_DIR, "**"))[2]
video_info = sv.VideoInfo.from_video_path(video_path)
i = 0
for frame in sv.get_video_frames_generator(video_path):
# from IPython import embed
# embed()
# exit()
i += 1
frame = cv2.imread("dataset/3-00331.jpg")
print(f"Frame {i}/{video_info.total_frames}")
results = model.predict(frame, imgsz=config.IMG_RESIZE[1])[0]
is_person_array = (results.boxes.cls == PERSON_CLASS) & (results.boxes.conf >= CONFIDENCE)
results.boxes = results.boxes[is_person_array]
box_annotator = sv.BoxAnnotator()
frame = box_annotator.annotate(scene=frame, detections=sv.Detections.from_ultralytics(results))
cv2.imshow("Frame", frame)
cv2.waitKey(0)