forked from ZhangAoCanada/RADDet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_testdata.py
92 lines (79 loc) · 3.41 KB
/
visualize_testdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Title: RADDet
# Authors: Ao Zhang, Erlik Nowruzi, Robert Laganiere
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from glob import glob
from tqdm import tqdm
import util.loader as loader
import util.helper as helper
import util.drawer as drawer
import multiprocessing as mp
from functools import partial
def cutImage(image_name):
image = cv2.imread(image_name)
part_1 = image[:, 1650:2550, :]
part_2 = image[:, 3950:4250, :]
part_3 = image[:, 5750:6500, :]
part_4 = image[:, 7450:8850, :]
new_img = np.concatenate([part_1, part_2, part_3, part_4], axis=1)
cv2.imwrite(image_name, new_img)
def process(RAD_filename, frame_id, config_data, config_radar, colors, \
fig, axes, interpolation=15, canvas_draw=False):
RAD = loader.readRAD(RAD_filename)
if "train" in RAD_filename:
prefix = config_data["train_set_dir"]
else:
prefix = config_data["test_set_dir"]
gt_file = loader.gtfileFromRADfile(RAD_filename, prefix)
gt_instances = loader.readRadarInstances(gt_file)
img_file = loader.imgfileFromRADfile(RAD_filename, prefix)
stereo_left_image = loader.readStereoLeft(img_file)
if RAD is not None and gt_instances is not None and \
stereo_left_image is not None:
RA = helper.getLog(helper.getSumDim(helper.getMagnitude(RAD, power_order=2), \
target_axis=-1), scalar=10, log_10=True)
RD = helper.getLog(helper.getSumDim(helper.getMagnitude(RAD, power_order=2), \
target_axis=1), scalar=10, log_10=True)
### NOTE: change the interval number if high resolution is needed for Cartesian ###
RA_cart = helper.toCartesianMask(RA, config_radar, \
gapfill_interval_num=interpolation)
RA_img = helper.norm2Image(RA)[..., :3]
RD_img = helper.norm2Image(RD)[..., :3]
RA_cart_img = helper.norm2Image(RA_cart)[..., :3]
drawer.clearAxes(axes)
drawer.drawRadarBoxes(stereo_left_image, RD_img, RA_img, RA_cart_img, \
gt_instances, config_data["all_classes"], colors, axes)
if not canvas_draw:
drawer.saveFigure("./images/samples/", "%.6d.png"%(frame_id))
cutImage("./images/samples/" + "%.6d.png"%(frame_id))
else:
drawer.keepDrawing(fig, 0.1)
def main(canvas_draw=False):
config = loader.readConfig()
config_data = config["DATA"]
config_radar = config["RADAR_CONFIGURATION"]
colors = loader.randomColors(config_data["all_classes"])
if not canvas_draw:
fig, axes = drawer.prepareFigure(4, figsize=(100, 8))
interpolation = 15
else:
fig, axes = drawer.prepareFigure(4, figsize=(20, 8))
interpolation = 1
all_RAD_files = glob(os.path.join(config_data["test_set_dir"], \
"RAD/*/*.npy"))
for i in tqdm(range(len(all_RAD_files))):
RAD_filename = all_RAD_files[i]
process(
RAD_filename=RAD_filename, \
frame_id = i, \
config_data=config_data, \
config_radar=config_radar, \
colors=colors, \
fig=fig, \
axes=axes, \
interpolation=interpolation, \
canvas_draw=canvas_draw)
if __name__ == "__main__":
main(canvas_draw=True)