|
1 | 1 | """ |
2 | 2 | defines utility functions to be used |
3 | 3 | """ |
4 | | -from pandas import DataFrame, DatetimeIndex, merge, to_datetime |
| 4 | +from pandas import DataFrame, DatetimeIndex, merge, to_datetime, to_timedelta |
5 | 5 |
|
6 | 6 | TICKER_INTERVAL_MINUTES = { |
7 | 7 | "1m": 1, |
@@ -45,63 +45,74 @@ def ticker_history_to_dataframe(ticker: list) -> DataFrame: |
45 | 45 | return frame |
46 | 46 |
|
47 | 47 |
|
48 | | -def resample_to_interval(dataframe, interval): |
49 | | - if isinstance(interval, str): |
50 | | - interval = TICKER_INTERVAL_MINUTES[interval] |
51 | | - |
| 48 | +def resample_to_interval(dataframe: DataFrame, interval): |
52 | 49 | """ |
53 | | - resamples the given dataframe to the desired interval. |
54 | | - Please be aware you need to upscale this to join the results |
55 | | - with the other dataframe |
| 50 | + Resamples the given dataframe to the desired interval. |
| 51 | + Please be aware you need to use resampled_merge to merge to another dataframe to |
| 52 | + avoid lookahead bias |
56 | 53 |
|
57 | 54 | :param dataframe: dataframe containing close/high/low/open/volume |
58 | 55 | :param interval: to which ticker value in minutes would you like to resample it |
59 | 56 | :return: |
60 | 57 | """ |
| 58 | + if isinstance(interval, str): |
| 59 | + interval = TICKER_INTERVAL_MINUTES[interval] |
61 | 60 |
|
62 | 61 | df = dataframe.copy() |
63 | 62 | df = df.set_index(DatetimeIndex(df["date"])) |
64 | 63 | ohlc_dict = {"open": "first", "high": "max", "low": "min", "close": "last", "volume": "sum"} |
65 | | - df = df.resample(str(interval) + "min", label="right").agg(ohlc_dict).dropna() |
66 | | - df["date"] = df.index |
| 64 | + # Resample to "left" border as dates are candle open dates |
| 65 | + df = df.resample(str(interval) + "min", label="left").agg(ohlc_dict).dropna() |
| 66 | + df.reset_index(inplace=True) |
67 | 67 |
|
68 | 68 | return df |
69 | 69 |
|
70 | 70 |
|
71 | | -def resampled_merge(original, resampled, fill_na=False): |
| 71 | +def resampled_merge(original: DataFrame, resampled: DataFrame, fill_na=True): |
72 | 72 | """ |
73 | | - this method merges a resampled dataset back into the orignal data set |
| 73 | + Merges a resampled dataset back into the orignal data set. |
| 74 | + Resampled candle will match OHLC only if full timespan is available in original dataframe. |
74 | 75 |
|
75 | 76 | :param original: the original non resampled dataset |
76 | 77 | :param resampled: the resampled dataset |
77 | 78 | :return: the merged dataset |
78 | 79 | """ |
79 | 80 |
|
80 | | - resampled_interval = compute_interval(resampled) |
81 | | - |
82 | | - # no point in interpolating these colums |
83 | | - resampled = resampled.drop(columns=["date", "volume"]) |
84 | | - |
85 | | - # rename all the colums to the correct interval |
86 | | - for header in list(resampled): |
87 | | - # store the resampled columns in it |
88 | | - resampled[f"resample_{resampled_interval}_{header}"] = resampled[header] |
89 | | - |
90 | | - # drop columns which should not be joined |
91 | | - resampled = resampled.drop(columns=["open", "high", "low", "close"]) |
92 | | - |
93 | | - resampled["date"] = resampled.index |
94 | | - resampled.index = range(len(resampled)) |
95 | | - dataframe = merge(original, resampled, on="date", how="left") |
| 81 | + original_int = compute_interval(original) |
| 82 | + resampled_int = compute_interval(resampled) |
| 83 | + |
| 84 | + if original_int < resampled_int: |
| 85 | + # Subtract "small" timeframe so merging is not delayed by 1 small candle. |
| 86 | + # Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073 |
| 87 | + resampled["date_merge"] = ( |
| 88 | + resampled["date"] + to_timedelta(resampled_int, "m") - to_timedelta(original_int, "m") |
| 89 | + ) |
| 90 | + else: |
| 91 | + raise ValueError( |
| 92 | + "Tried to merge a faster timeframe to a slower timeframe." "Upsampling is not possible." |
| 93 | + ) |
| 94 | + |
| 95 | + # rename all the columns to the correct interval |
| 96 | + resampled.columns = [f"resample_{resampled_int}_{col}" for col in resampled.columns] |
| 97 | + |
| 98 | + dataframe = merge( |
| 99 | + original, |
| 100 | + resampled, |
| 101 | + how="left", |
| 102 | + left_on="date", |
| 103 | + right_on=f"resample_{resampled_int}_date_merge", |
| 104 | + ) |
| 105 | + dataframe = dataframe.drop(f"resample_{resampled_int}_date_merge", axis=1) |
96 | 106 |
|
97 | 107 | if fill_na: |
98 | 108 | dataframe.fillna(method="ffill", inplace=True) |
| 109 | + |
99 | 110 | return dataframe |
100 | 111 |
|
101 | 112 |
|
102 | 113 | def compute_interval(dataframe: DataFrame, exchange_interval=False): |
103 | 114 | """ |
104 | | - calculates the interval of the given dataframe for us |
| 115 | + Calculates the interval of the given dataframe for us |
105 | 116 | :param dataframe: |
106 | 117 | :param exchange_interval: should we convert the result to an exchange interval or just a number |
107 | 118 | :return: |
|
0 commit comments