-
Notifications
You must be signed in to change notification settings - Fork 44
/
audioset.py
266 lines (219 loc) · 9.21 KB
/
audioset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import io
import av
from torch.utils.data import Dataset as TorchDataset, ConcatDataset, WeightedRandomSampler
import torch
import numpy as np
import h5py
import os
from datasets.helpers.audiodatasets import PreprocessDataset, get_roll_func
# specify AudioSet location in 'dataset_dir'
# 3 files have to be located there:
# - balanced_train_segments_mp3.hdf
# - unbalanced_train_segments_mp3.hdf
# - eval_segments_mp3.hdf
# follow the instructions here to get these 3 files:
# https://github.com/kkoutini/PaSST/tree/main/audioset
dataset_dir = None
assert dataset_dir is not None, "Specify AudioSet location in variable 'dataset_dir'. " \
"Check out the Readme file for further instructions. " \
"https://github.com/fschmid56/EfficientAT/blob/main/README.md"
dataset_config = {
'balanced_train_hdf5': os.path.join(dataset_dir, "balanced_train_segments_mp3.hdf"),
'unbalanced_train_hdf5': os.path.join(dataset_dir, "unbalanced_train_segments_mp3.hdf"),
'eval_hdf5': os.path.join(dataset_dir, "eval_segments_mp3.hdf"),
'num_of_classes': 527
}
def decode_mp3(mp3_arr):
"""
decodes an array if uint8 representing an mp3 file
:rtype: np.array
"""
container = av.open(io.BytesIO(mp3_arr.tobytes()))
stream = next(s for s in container.streams if s.type == 'audio')
# print(stream)
a = []
for i, packet in enumerate(container.demux(stream)):
for frame in packet.decode():
a.append(frame.to_ndarray().reshape(-1))
waveform = np.concatenate(a)
if waveform.dtype != 'float32':
raise RuntimeError("Unexpected wave type")
return waveform
def pad_or_truncate(x, audio_length):
"""Pad all audio to specific length."""
if len(x) <= audio_length:
return np.concatenate((x, np.zeros(audio_length - len(x), dtype=np.float32)), axis=0)
else:
return x[0: audio_length]
def pydub_augment(waveform, gain_augment=0):
if gain_augment:
gain = torch.randint(gain_augment * 2, (1,)).item() - gain_augment
amp = 10 ** (gain / 20)
waveform = waveform * amp
return waveform
class MixupDataset(TorchDataset):
""" Mixing Up wave forms
"""
def __init__(self, dataset, beta=2, rate=0.5):
self.beta = beta
self.rate = rate
self.dataset = dataset
print(f"Mixing up waveforms from dataset of len {len(dataset)}")
def __getitem__(self, index):
if torch.rand(1) < self.rate:
x1, f1, y1 = self.dataset[index]
idx2 = torch.randint(len(self.dataset), (1,)).item()
x2, f2, y2 = self.dataset[idx2]
l = np.random.beta(self.beta, self.beta)
l = max(l, 1. - l)
x1 = x1 - x1.mean()
x2 = x2 - x2.mean()
x = (x1 * l + x2 * (1. - l))
x = x - x.mean()
return x, f1, (y1 * l + y2 * (1. - l))
return self.dataset[index]
def __len__(self):
return len(self.dataset)
class AddIndexDataset(TorchDataset):
def __init__(self, ds):
self.ds = ds
def __getitem__(self, index):
x, f, y = self.ds[index]
return x, f, y, index
def __len__(self):
return len(self.ds)
class AudioSetDataset(TorchDataset):
def __init__(self, hdf5_file, sample_rate=32000, resample_rate=32000, classes_num=527,
clip_length=10, in_mem=False, gain_augment=0):
"""
Reads the mp3 bytes from HDF file decodes using av and returns a fixed length audio wav
"""
self.sample_rate = sample_rate
self.resample_rate = resample_rate
self.hdf5_file = hdf5_file
if in_mem:
print("\nPreloading in memory\n")
with open(hdf5_file, 'rb') as f:
self.hdf5_file = io.BytesIO(f.read())
with h5py.File(hdf5_file, 'r') as f:
self.length = len(f['audio_name'])
print(f"Dataset from {hdf5_file} with length {self.length}.")
self.dataset_file = None # lazy init
self.clip_length = clip_length * sample_rate
self.classes_num = classes_num
self.gain_augment = gain_augment
def open_hdf5(self):
self.dataset_file = h5py.File(self.hdf5_file, 'r')
def __len__(self):
return self.length
def __del__(self):
if self.dataset_file is not None:
self.dataset_file.close()
self.dataset_file = None
def __getitem__(self, index):
"""Load waveform and target of an audio clip.
Args:
'index': int
Returns:
data_dict: {
'audio_name': str,
'waveform': (clip_samples,),
'target': (classes_num,)}
"""
if self.dataset_file is None:
self.open_hdf5()
audio_name = self.dataset_file['audio_name'][index].decode()
# convert our modified filenames to official file names
audio_name = audio_name.replace(".mp3", "").split("Y", 1)[1]
waveform = decode_mp3(self.dataset_file['mp3'][index])
waveform = pydub_augment(waveform, self.gain_augment)
waveform = pad_or_truncate(waveform, self.clip_length)
waveform = self.resample(waveform)
target = self.dataset_file['target'][index]
target = np.unpackbits(target, axis=-1,
count=self.classes_num).astype(np.float32)
return waveform.reshape(1, -1), audio_name, target
def resample(self, waveform):
"""Resample.
Args:
waveform: (clip_samples,)
Returns:
(resampled_clip_samples,)
"""
if self.resample_rate == 32000:
return waveform
elif self.resample_rate == 16000:
return waveform[0:: 2]
elif self.resample_rate == 8000:
return waveform[0:: 4]
else:
raise Exception('Incorrect sample rate!')
def get_ft_weighted_sampler(epoch_len=100000, sampler_replace=False):
samples_weights = get_ft_cls_balanced_sample_weights()
return WeightedRandomSampler(samples_weights, num_samples=epoch_len, replacement=sampler_replace)
def get_ft_cls_balanced_sample_weights(sample_weight_offset=100, sample_weight_sum=True):
"""
:return: float tensor of shape len(full_training_set) representing the weights of each sample.
"""
# the order of balanced_train_hdf5,unbalanced_train_hdf5 is important.
# should match get_full_training_set
unbalanced_train_hdf5 = dataset_config['unbalanced_train_hdf5']
balanced_train_hdf5 = dataset_config['balanced_train_hdf5']
num_of_classes = dataset_config['num_of_classes']
all_y = []
for hdf5_file in [balanced_train_hdf5, unbalanced_train_hdf5]:
with h5py.File(hdf5_file, 'r') as dataset_file:
target = dataset_file['target']
target = np.unpackbits(target, axis=-1, count=num_of_classes)
all_y.append(target)
all_y = np.concatenate(all_y, axis=0)
all_y = torch.as_tensor(all_y)
per_class = all_y.long().sum(0).float().reshape(1, -1) # frequencies per class
per_class = sample_weight_offset + per_class # offset low freq classes
if sample_weight_offset > 0:
print(f"Warning: sample_weight_offset={sample_weight_offset} minnow={per_class.min()}")
per_class_weights = 1000. / per_class
all_weight = all_y * per_class_weights
if sample_weight_sum:
all_weight = all_weight.sum(dim=1)
else:
all_weight, _ = all_weight.max(dim=1)
return all_weight
def get_base_full_training_set(resample_rate=32000, gain_augment=0):
sets = [get_base_training_set(resample_rate=resample_rate, gain_augment=gain_augment),
get_unbalanced_training_set(resample_rate=resample_rate, gain_augment=gain_augment)]
ds = ConcatDataset(sets)
return ds
def get_base_training_set(resample_rate=32000, gain_augment=0):
balanced_train_hdf5 = dataset_config['balanced_train_hdf5']
ds = AudioSetDataset(balanced_train_hdf5, resample_rate=resample_rate, gain_augment=gain_augment)
return ds
def get_unbalanced_training_set(resample_rate=32000, gain_augment=0):
unbalanced_train_hdf5 = dataset_config['unbalanced_train_hdf5']
ds = AudioSetDataset(unbalanced_train_hdf5, resample_rate=resample_rate, gain_augment=gain_augment)
return ds
def get_base_test_set(resample_rate=32000):
eval_hdf5 = dataset_config['eval_hdf5']
ds = AudioSetDataset(eval_hdf5, resample_rate=resample_rate)
return ds
def get_training_set(add_index=True, roll=False, wavmix=False, gain_augment=0, resample_rate=32000):
ds = get_base_training_set(resample_rate=resample_rate, gain_augment=gain_augment)
if roll:
ds = PreprocessDataset(ds, get_roll_func())
if wavmix:
ds = MixupDataset(ds)
if add_index:
ds = AddIndexDataset(ds)
return ds
def get_full_training_set(add_index=True, roll=False, wavmix=False, gain_augment=0, resample_rate=32000):
ds = get_base_full_training_set(resample_rate=resample_rate, gain_augment=gain_augment)
if roll:
ds = PreprocessDataset(ds, get_roll_func())
if wavmix:
ds = MixupDataset(ds)
if add_index:
ds = AddIndexDataset(ds)
return ds
def get_test_set(resample_rate=32000):
ds = get_base_test_set(resample_rate=resample_rate)
return ds