-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaxentscan_wrapper.py
296 lines (266 loc) · 14.7 KB
/
maxentscan_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# -*- coding:utf-8 -*-
from vcf.parser import _Info as VcfInfo, field_counts as vcf_field_counts
from multiprocessing import Queue, Process, Pool, cpu_count
from maxentpy.maxent import load_matrix5, load_matrix3
from maxentpy.maxent_fast import score5, score3
from functools import partial, reduce
from argparse import ArgumentParser
from collections import namedtuple
from itertools import count
import pandas as pd
import pyfaidx
import queue
import vcf
import os
ROOT = os.path.abspath(os.path.dirname(__file__))
ANNOTATION = os.path.join(ROOT, 'annotation')
VariantRecord = namedtuple('VariantRecord', ['chromosome', 'pos', 'ref', 'alt'])
VariantAnnotation = namedtuple('VariantAnnotation', ['location', 'exon_nearby', 'exon_start', 'exon_end', 'strand', 'gene'])
class MaxEntScan:
def __init__(self, annotation, reference):
self.annotation = pd.read_csv(os.path.join(ANNOTATION, annotation + '.exon.gff.tsv'), sep='\t', header=None, dtype={0: str})
self.matrix5 = load_matrix5()
self.matrix3 = load_matrix3()
self.reference = pyfaidx.Fasta(reference)
def mes_score(self, record):
if not (record.ref in ['A', 'T', 'C', 'G', 'a', 't', 'c', 'g'] and record.alt in ['A', 'T', 'C', 'G', 'a', 't', 'c', 'g']):
return record.alt + '|.|.|.|.'
record_anno = MaxEntScan.variant_annotation(self.annotation, record, 0)
seq_ss, seq_ss_mut, ss = '', '', ''
if record_anno.location == 'exon':
if record_anno.strand == '+':
if record.pos + 2 >= record_anno.exon_end:
seq_ss, seq_ss_mut, ss = MaxEntScan.forward_exon_ss5(self.reference, record, record_anno.exon_end)
elif record.pos - 2 <= record_anno.exon_start:
seq_ss, seq_ss_mut, ss = MaxEntScan.forward_exon_ss3(self.reference, record, record_anno.exon_start)
else:
if record.pos - 2 <= record_anno.exon_start:
seq_ss, seq_ss_mut, ss = MaxEntScan.reverse_exon_ss5(self.reference, record, record_anno.exon_start)
elif record.pos + 2 >= record_anno.exon_end:
seq_ss, seq_ss_mut, ss = MaxEntScan.reverse_exon_ss3(self.reference, record, record_anno.exon_end)
return '|'.join([record.alt, record_anno.gene, *MaxEntScan.score_ss_seq(self.matrix5, self.matrix3, seq_ss, seq_ss_mut, ss)])
else:
record_anno = MaxEntScan.variant_annotation(self.annotation, record, -6)
if record_anno.exon_nearby:
if record_anno.strand == '+':
seq_ss, seq_ss_mut, ss = MaxEntScan.forward_intron_ss5(self.reference, record, record_anno.exon_end)
return '|'.join([record.alt, record_anno.gene, *MaxEntScan.score_ss_seq(self.matrix5, self.matrix3, seq_ss, seq_ss_mut, ss)])
record_anno = MaxEntScan.variant_annotation(self.annotation, record, 20)
if record_anno.exon_nearby:
if record_anno.strand == '+':
seq_ss, seq_ss_mut, ss = MaxEntScan.forward_intron_ss3(self.reference, record, record_anno.exon_start)
return '|'.join([record.alt, record_anno.gene, *MaxEntScan.score_ss_seq(self.matrix5, self.matrix3, seq_ss, seq_ss_mut, ss)])
record_anno = MaxEntScan.variant_annotation(self.annotation, record, 6)
if record_anno.exon_nearby:
if record_anno.strand == '-':
seq_ss, seq_ss_mut, ss = MaxEntScan.reverse_intron_ss5(self.reference, record, record_anno.exon_start)
return '|'.join([record.alt, record_anno.gene, *MaxEntScan.score_ss_seq(self.matrix5, self.matrix3, seq_ss, seq_ss_mut, ss)])
record_anno = MaxEntScan.variant_annotation(self.annotation, record, -20)
if record_anno.exon_nearby:
if record_anno.strand == '-':
seq_ss, seq_ss_mut, ss = MaxEntScan.reverse_intron_ss3(self.reference, record, record_anno.exon_end)
return '|'.join([record.alt, record_anno.gene, *MaxEntScan.score_ss_seq(self.matrix5, self.matrix3, seq_ss, seq_ss_mut, ss)])
return '|'.join([record.alt, '.', *MaxEntScan.score_ss_seq(self.matrix5, self.matrix3, seq_ss, seq_ss_mut, ss)])
@staticmethod
def variant_annotation(annotation, record, offset):
exon = annotation[(annotation[0] == record.chromosome) & (annotation[1] <= record.pos + offset) & (record.pos + offset <= annotation[2])]
if exon.empty:
location = 'intron'
exon_nearby = False
exon_start = None
exon_end = None
strand = None
gene = None
else:
location = 'exon'
exon_nearby = True
exon_start = exon[1].values[0]
exon_end = exon[2].values[0]
strand = exon[3].values[0]
gene = exon[4].values[0]
return VariantAnnotation(location, exon_nearby, exon_start, exon_end, strand, gene)
@staticmethod
def forward_exon_ss5(reference, record, exon_end):
seq_ss5 = str(reference.get_seq(record.chromosome, exon_end - 2, exon_end + 6))
seq_ss5 = seq_ss5[0:3].lower() + seq_ss5[3:5] + seq_ss5[5:].lower()
seq_ss5_mut = seq_ss5[0:record.pos - exon_end + 2] + record.alt + seq_ss5[record.pos - exon_end + 3:]
return seq_ss5, seq_ss5_mut, 'ss5'
@staticmethod
def reverse_exon_ss5(reference, record, exon_start):
seq_ss5 = str(reference.get_seq(record.chromosome, exon_start - 6, exon_start + 2).reverse.complement)
seq_ss5 = seq_ss5[0:3].lower() + seq_ss5[3:5] + seq_ss5[5:].lower()
seq_ss5_mut = seq_ss5[0:exon_start - record.pos + 2] + MaxEntScan.base_complement(record.alt) + seq_ss5[exon_start - record.pos + 3:]
return seq_ss5, seq_ss5_mut, 'ss5'
@staticmethod
def forward_exon_ss3(reference, record, exon_start):
seq_ss3 = str(reference.get_seq(record.chromosome, exon_start - 20, exon_start + 2))
seq_ss3 = seq_ss3[0:18].lower() + seq_ss3[18:20] + seq_ss3[20:].lower()
seq_ss3_mut = seq_ss3[0:20] + seq_ss3[20:record.pos - exon_start + 20] + record.alt + seq_ss3[record.pos - exon_start + 21:]
return seq_ss3, seq_ss3_mut, 'ss3'
@staticmethod
def reverse_exon_ss3(reference, record, exon_end):
seq_ss3 = str(reference.get_seq(record.chromosome, exon_end - 2, exon_end + 20).reverse.complement)
seq_ss3 = seq_ss3[0:18].lower() + seq_ss3[18:20] + seq_ss3[20:].lower()
seq_ss3_mut = seq_ss3[0:20] + seq_ss3[20:exon_end - record.pos + 20] + MaxEntScan.base_complement(record.alt) + seq_ss3[exon_end - record.pos + 21:]
return seq_ss3, seq_ss3_mut, 'ss3'
@staticmethod
def forward_intron_ss5(reference, record, exon_end):
seq_ss5 = str(reference.get_seq(record.chromosome, exon_end - 2, exon_end + 6))
seq_ss5 = seq_ss5[0:3].lower() + seq_ss5[3:5] + seq_ss5[5:].lower()
seq_ss5_mut = seq_ss5[0:3] + seq_ss5[3:record.pos - exon_end + 2] + record.alt + seq_ss5[record.pos - exon_end + 3:]
return seq_ss5, seq_ss5_mut, 'ss5'
@staticmethod
def reverse_intron_ss5(reference, record, exon_start):
seq_ss5 = str(reference.get_seq(record.chromosome, exon_start - 6, exon_start + 2).reverse.complement)
seq_ss5 = seq_ss5[0:3].lower() + seq_ss5[3:5] + seq_ss5[5:].lower()
seq_ss5_mut = seq_ss5[0:3] + seq_ss5[3:exon_start - record.pos + 2] + MaxEntScan.base_complement(record.alt) + seq_ss5[exon_start - record.pos + 3:]
return seq_ss5, seq_ss5_mut, 'ss5'
@staticmethod
def forward_intron_ss3(reference, record, exon_start):
seq_ss3 = str(reference.get_seq(record.chromosome, exon_start - 20, exon_start + 2))
seq_ss3 = seq_ss3[0:18].lower() + seq_ss3[18:20] + seq_ss3[20:].lower()
seq_ss3_mut = seq_ss3[0:record.pos - exon_start + 20] + record.alt + seq_ss3[record.pos - exon_start + 21:]
return seq_ss3, seq_ss3_mut, 'ss3'
@staticmethod
def reverse_intron_ss3(reference, record, exon_end):
seq_ss3 = str(reference.get_seq(record.chromosome, exon_end - 2, exon_end + 20).reverse.complement)
seq_ss3 = seq_ss3[0:18].lower() + seq_ss3[18:20] + seq_ss3[20:].lower()
seq_ss3_mut = seq_ss3[0:exon_end - record.pos + 20] + MaxEntScan.base_complement(record.alt) + seq_ss3[exon_end - record.pos + 21:]
return seq_ss3, seq_ss3_mut, 'ss3'
@staticmethod
def score_ss_seq(matrix5, matrix3, seq_ss, seq_ss_mut, ss):
if 'N' in seq_ss or 'N' in seq_ss_mut or 'n' in seq_ss or 'n' in seq_ss_mut:
return '.', '.', '.'
if ss == 'ss5':
score_wt = score5(seq_ss, matrix=matrix5)
score_mut = score5(seq_ss_mut, matrix=matrix5)
return str(round(score_wt, 3)), str(round(score_mut, 3)), str(round((score_mut - score_wt) / score_wt, 3))
elif ss == 'ss3':
score_wt = score3(seq_ss, matrix=matrix3)
score_mut = score3(seq_ss_mut, matrix=matrix3)
return str(round(score_wt, 3)), str(round(score_mut, 3)), str(round((score_mut - score_wt) / score_wt, 3))
else:
return '.', '.', '.'
@staticmethod
def base_complement(dna_base):
complement_rule = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C', 'a': 'T', 't': 'A', 'c': 'G', 'g': 'C'}
return complement_rule[dna_base]
def split_df(df, split_num):
df.reset_index(drop=True, inplace=True)
df_list = list()
step = round(df.shape[0]/split_num)
for i in range(split_num):
if i == 0:
df_list.append(df.loc[0: step-1])
elif i == split_num-1:
df_list.append(df.loc[step*i:])
else:
df_list.append(df.loc[step*i:step*(i+1)-1])
return df_list
def score_pseudo_vcf(annotation, reference, format_in, df):
mes = MaxEntScan(annotation, reference)
if format_in == 'vcf-4cols':
df['MaxEntScan'] = df.apply(lambda x: mes.mes_score(VariantRecord(x['#CHROM'], x['POS'], x['REF'], x['ALT'])), axis=1)
else:
df['MaxEntScan'] = df.apply(lambda x: mes.mes_score(VariantRecord(x['#Chr'], x['Stop'], x['Ref'], x['Call'])), axis=1)
return df
def annotation_pseudo_vcf(parsed_args, process_num):
if parsed_args.format_in == 'vcf-4cols':
df = pd.read_csv(parsed_args.file_in, sep='\t', dtype={'#CHROM': str})
else:
df = pd.read_csv(parsed_args.file_in, sep='\t', dtype={'#Chr': str})
df_list = split_df(df, process_num)
score_partial = partial(score_pseudo_vcf, parsed_args.annotation, parsed_args.reference, parsed_args.format_in)
with Pool(process_num) as pool:
df_list_score = pool.map(score_partial, df_list)
df_score = reduce(lambda x, y: x.append(y), df_list_score)
df_score.to_csv(parsed_args.file_out, sep='\t', index=False)
def score_vcf(records, results, annotation, reference):
mes = MaxEntScan(annotation, reference)
while True:
try:
record = records.get(False)
except queue.Empty:
continue
if record != 'END':
record_id, record_infos, record_score_list = record[0], record[1], list()
for record_info in record_infos:
record_score_list.append(mes.mes_score(record_info))
results.put((record_id, ','.join(record_score_list)))
else:
records.put('END')
break
def annotation_vcf(parsed_args, process_num):
records, results = Queue(100 * process_num), Queue()
input_finished = False
output_finished = False
wait_records = dict()
processes = list()
records_id = count()
for i in range(process_num):
p = Process(target=score_vcf, args=(records, results, parsed_args.annotation, parsed_args.reference))
processes.append(p)
p.start()
vcf_reader = vcf.Reader(filename=parsed_args.file_in)
vcf_reader.infos['MaxEntScan'] = VcfInfo('MaxEntScan', vcf_field_counts['A'], 'String',
'MaxEntScan Score for VCF record alleles, related_score = (mut_score-wild_score)/wild_score Format: ALLELE|SYMBOL|wild_score|mut_score|related_score',
version=None, source=None)
vcf_writer = vcf.Writer(open(parsed_args.file_out, 'w'), vcf_reader)
while True:
while not records.full() and not input_finished:
try:
record = next(vcf_reader)
record_id = next(records_id)
wait_records[record_id] = record
record_infos = list()
chromosome = str(record.CHROM)
pos = record.POS
ref = record.REF
for alt in record.ALT:
record_infos.append(VariantRecord(chromosome, pos, ref, str(alt)))
records.put((record_id, record_infos))
except StopIteration:
input_finished = True
records.put('END')
break
processes_status = list()
for p in processes:
processes_status.append(p.is_alive())
if True not in processes_status:
results.put('END')
while True:
try:
result = results.get(False)
except queue.Empty:
break
if result != 'END':
record_id, record_score = result[0], result[1]
record_write = wait_records.pop(record_id)
record_write.add_info('MaxEntScan', record_score)
vcf_writer.write_record(record_write)
else:
output_finished = True
break
if output_finished:
break
vcf_writer.close()
def main():
parser = ArgumentParser()
parser.add_argument('-r', help='Reference genome fasta file', required=True, dest='reference')
parser.add_argument('-a', help='Genome annotation: GRCh37 or GRCh38', default='GRCh37', dest='annotation')
parser.add_argument('-i', help='Input file', required=True, dest='file_in')
parser.add_argument('-o', help='Output file', required=True, dest='file_out')
parser.add_argument('--format_in', help='Input file format: vcf,vcf-4cols,bgianno', default='vcf-4cols', dest='format_in')
parser.add_argument('-p', help='Process number', type=int, default=1, dest='processes')
parsed_args = parser.parse_args()
if parsed_args.annotation not in ['GRCh37', 'GRCh38']:
raise Exception('Genome not recognized! Must be GRCh37 or GRCh38')
if parsed_args.format_in not in ['vcf', 'vcf-4cols', 'bgianno']:
raise Exception('Input file format not recognized! Must be vcf, vcf-4cols or bgianno')
process_num = min(cpu_count(), parsed_args.processes)
if parsed_args.format_in != 'vcf':
annotation_pseudo_vcf(parsed_args, process_num)
else:
annotation_vcf(parsed_args, process_num)
if __name__ == '__main__':
main()