Skip to content

Latest commit

 

History

History
66 lines (65 loc) · 2.02 KB

calc1.md

File metadata and controls

66 lines (65 loc) · 2.02 KB

Calculus 1

  • A. Functions
    • Function notation
    • Domain and range
    • Graphs
    • Zeros (roots)
    • Combining functions
    • Composing functions
    • Symmetry
  • B. Polynomials
    • Linears
    • Quadratics
    • Piecewise
    • Function transformation
  • C. Trigonometry
  • D. Inverses
  • E. Exp and Logs
  • F. Limits Graphically (includes limits involving infinity)
  • G. Limits Numerically
  • H. Limits Algebraically (includes sinx/x)
  • I. Limits Algebraically with Infinity (infinite forms)
  • J. Continuity
    • Intermediate Value Theorem
  • K. Derivatives Graphically (includes notation, linearity)
  • L. Derivative Definition
  • M. Famous Derivatives
  • N. Product and Quotient Rules (fg)' (f/g)'
  • O. Chain Rule (f(g(x))'
    • Logarithmic Derivative
  • P. Implicit Derivatives
  • Q. L'Hopital's Rule
  • R. Differentials df
  • S. Rates
  • T. Absolute Extrema
    • Mean Value Theorem
  • U. Local Extrema
    • Sketching Everywhere Continuous Function
    • Sketching Functions (with asymptotes)
  • V. Optimization
  • W. Integrals Graphically (includes FTCab, FTCax including as solving F'=given & F(a)=0)
  • X. Sums
    • Sigma notation
    • Right Sum R_xᵢ = Σ (xᵢ₋₁ - xᵢ) f(xᵢ)
    • Partition (xᵢ)
    • Regular Partition: w = (b-a)/n; xᵢ = a + iw
    • Regular Right Sum R_n = w Σ f(xᵢ)
    • Regular Left Sum L_n = w Σ f(xᵢ₋₁)
    • Test point
    • Regular Mid Sum M_n = w Σ f(xᵢ₋₁⸝₂)
    • Riemann Sum RIE_xᵢcᵢ = Σ (xᵢ₋₁ - xᵢ) f(cᵢ)
    • Fineness of Riemann Sum: fineness(RIE) = max(xᵢ₋₁ - xᵢ)
    • Valid sequence of Riemann Sums RIE1, RIE2, RIE3, ...: fineness(RIEk) -> 0.
    • Tn, UPn, LOn
    • Definition of (Definite) Integral
    • Find lim R_n for f(x) = 2x over [0,1]
    • Riemann Integrable over [a,b]: lim UPn = lim LOn
    • Riemann Integrability Theroem. Let f be Riemann Integrable over [a,b]. (That means lim UPn = lim LOn.) Then every valid sequence of Riemann Sums RIE1, RIE2, RIE3, ... (meaning lim fineness(RIEk) = 0) converges to the same limit L.
  • Y. Antiderivatives (includes FTCab, FTCax)
  • Z. u-subs