-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscgan_svhn.py
262 lines (211 loc) · 11.1 KB
/
scgan_svhn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import tensorflow as tf
import utils
import numpy as np
import os
import time
from ops import *
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
slim = tf.contrib.slim
tf.app.flags.DEFINE_boolean(
'train', True, 'Whether to train or test.')
tf.app.flags.DEFINE_integer(
'batch_size', 32, 'The number of samples in each batch.')
tf.app.flags.DEFINE_integer(
'dim', 64, 'The dimensionality of hidden layer.')
tf.app.flags.DEFINE_integer(
'z_dim', 126, 'The dimensionality of noise.')
tf.app.flags.DEFINE_integer(
'epoch', 50, 'The number of epoch.')
tf.app.flags.DEFINE_integer(
'disc_iters', 5, 'The number of iterations for discriminator.')
tf.app.flags.DEFINE_integer(
'con_dim', 0, 'The index of variational conditional variable for test, 0 or 1.')
tf.app.flags.DEFINE_float(
'learning_rate', 1e-4, 'Initial learning rate.')
tf.app.flags.DEFINE_float(
'lambd', 1., 'The coefficient of similarity regularization.')
tf.app.flags.DEFINE_float(
'gp_lambd', 10., 'The weight of gradient penalty.')
tf.app.flags.DEFINE_float(
'adam_beta1', 0.5, 'The exponential decay rate for the 1st moment estimates.')
tf.app.flags.DEFINE_float(
'adam_beta2', 0.9, 'The exponential decay rate for the 2nd moment estimates.')
tf.app.flags.DEFINE_string(
'data_dir', '/home/clb/dataset',
'The directory to load dataset svhn.')
tf.app.flags.DEFINE_string(
'result_dir', 'result',
'The directory to save result of scgan.')
tf.app.flags.DEFINE_string(
'checkpoint_dir', 'checkpoint',
'The directory to save or load checkpoint file.')
tf.app.flags.DEFINE_string(
'dataset_type', 'svhn',
'The dataset svhn.')
FLAGS = tf.app.flags.FLAGS
data_dir = os.path.join(FLAGS.data_dir, FLAGS.dataset_type)
result_dir = os.path.join(FLAGS.result_dir, 'scgan_' + FLAGS.dataset_type + '_continuous')
checkpoint_dir = os.path.join(FLAGS.checkpoint_dir, 'scgan_' + FLAGS.dataset_type + '_continuous')
def discriminator(input_x, is_training=True, reuse=False):
with tf.variable_scope('discriminator', values=[input_x], reuse=reuse) as sc:
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.02),
biases_initializer=tf.constant_initializer(0.0),
activation_fn=leaky_relu,
weights_regularizer=tf.contrib.layers.l2_regularizer(0.0001)):
with slim.arg_scope([slim.conv2d], padding='SAME'):
with slim.arg_scope([slim.batch_norm], is_training=is_training):
net = slim.conv2d(input_x, FLAGS.dim, [5, 5], stride=2, scope='d_conv1', normalizer_fn=None)
net = slim.conv2d(net, 2*FLAGS.dim, [5, 5], stride=2, scope='d_conv2')
net = slim.conv2d(net, 4*FLAGS.dim, [5, 5], stride=2, scope='d_conv3')
net = slim.flatten(net)
net = slim.fully_connected(net, 1, scope='d_fc4', normalizer_fn=None, activation_fn=None)
return tf.nn.sigmoid(net), net
def generator(input_z, is_training=True, reuse=False):
with tf.variable_scope('generator', values=[input_z], reuse=reuse) as sc:
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.02),
biases_initializer=tf.constant_initializer(0.0),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params,
weights_regularizer=tf.contrib.layers.l2_regularizer(0.0001)):
with slim.arg_scope([slim.conv2d], padding='SAME'):
with slim.arg_scope([slim.batch_norm], is_training=is_training):
net = slim.fully_connected(input_z, 64*FLAGS.dim, scope='g_fc1')
net = tf.reshape(net, [-1, 4, 4, 4*FLAGS.dim])
net = slim.conv2d_transpose(net, 2*FLAGS.dim, [5, 5], stride=2, scope='g_dconv2')
net = slim.conv2d_transpose(net, FLAGS.dim, [5, 5], stride=2, scope='g_dconv3')
net = slim.conv2d_transpose(net, 3, [5, 5], stride=2, scope='g_dconv4', activation_fn=None)
return tf.nn.tanh(net), net
x = tf.placeholder(tf.float32, [None, 32, 32, 3], name='x')
z = tf.placeholder(tf.float32, [None, FLAGS.z_dim], name='z')
c = tf.placeholder(tf.float32, [None, 2], name='c')
# c_one_hot = tf.one_hot(c, 10)
zc = tf.concat([z, c], axis=1)
# structure
D_real, D_real_logits = discriminator(x, is_training=True, reuse=False)
G_fake, G_fake_logits = generator(zc, is_training=True, reuse=False)
D_fake, D_fake_logits = discriminator(G_fake, is_training=True, reuse=True)
# loss for discriminator
d_loss = tf.reduce_mean(D_fake_logits - D_real_logits)
# gradient penalty
alpha = tf.random_uniform([FLAGS.batch_size, 1, 1, 1], 0., 1.)
interpolates = alpha*x+(1.-alpha)*G_fake
_, D_inter_logits = discriminator(interpolates, is_training=True, reuse=True)
grad = tf.gradients(D_inter_logits, [interpolates])[0]
grad_norm = tf.sqrt(tf.reduce_sum(tf.square(grad), axis=[1,2,3]))
gradient_penalty = tf.reduce_mean(tf.square(grad_norm-1.))
d_loss += FLAGS.gp_lambd * gradient_penalty
# loss for generator
g_loss = tf.reduce_mean(-D_fake_logits)
if FLAGS.train:
# similarity regularization
sim_reg_list = []
for i in range(FLAGS.batch_size):
for j in range(i+1, FLAGS.batch_size):
a = 1. - tf.abs(c[i]-c[j])
sim = tf.sqrt(tf.reduce_sum(tf.square(G_fake[i]-G_fake[j])))
sim_reg_list.append(tf.reduce_sum(a*sim+(1.-a)/(sim+1e-5)))
sim_reg = tf.truediv(tf.add_n(sim_reg_list), FLAGS.batch_size*(FLAGS.batch_size-1.))
g_loss += FLAGS.lambd * sim_reg
# trainable variable
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'discriminator' in var.op.name]
g_vars = [var for var in t_vars if 'generator' in var.op.name]
# optimizers
d_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
g_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, 'generator') + \
tf.get_collection(tf.GraphKeys.UPDATE_OPS, 'discriminator_1')
with tf.control_dependencies(d_update_ops):
d_optim = tf.train.AdamOptimizer(FLAGS.learning_rate, beta1=FLAGS.adam_beta1,
beta2=FLAGS.adam_beta2).minimize(d_loss, var_list=d_vars)
with tf.control_dependencies(g_update_ops):
g_optim = tf.train.AdamOptimizer(FLAGS.learning_rate, beta1=FLAGS.adam_beta1,
beta2=FLAGS.adam_beta2).minimize(g_loss, var_list=g_vars)
# test
fake_images, _ = generator(zc, is_training=False, reuse=True)
# dataset
trainX, trainY = utils.load_svhn(data_dir)
train_gen = utils.get_batch(trainX, trainY, FLAGS.batch_size)
# for test
sample_z = np.random.normal(size=[FLAGS.batch_size, FLAGS.z_dim])
sample_c = np.random.uniform(0., 1., size=[FLAGS.batch_size, 2])
saver = tf.train.Saver(max_to_keep=20)
if not os.path.exists(result_dir):
os.makedirs(result_dir)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
def train():
num_batches = FLAGS.epoch * (len(trainX) // FLAGS.batch_size)
d_loss_list, g_loss_list, sim_reg_list, step_list = [], [], [], []
start_time = time.time()
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(num_batches):
for j in range(FLAGS.disc_iters):
batch_x = (next(train_gen)[0]/255.-.5)*2.
batch_z = np.random.normal(size=[FLAGS.batch_size, FLAGS.z_dim]).astype(np.float32)
batch_c = np.random.uniform(0., 1., size=[FLAGS.batch_size, 2])
# update discriminator
_, _d_loss = sess.run([d_optim, d_loss], feed_dict={x:batch_x, z:batch_z, c:batch_c})
# update generator
batch_z = np.random.normal(size=[FLAGS.batch_size, FLAGS.z_dim]).astype(np.float32)
batch_c = np.random.uniform(0., 1., size=[FLAGS.batch_size, 2])
_, _g_loss, _sim_reg = sess.run([g_optim, g_loss, sim_reg], feed_dict={z:batch_z, c:batch_c})
if i % 10 == 0:
print('Step: [%5d], time: %4.2f, d_loss: %.8f, g_loss: %.8f, sim_loss: %.8f' \
% (i+1, time.time() - start_time, _d_loss, _g_loss, _sim_reg))
start_time = time.time()
if i % 30 == 0:
d_loss_list.append(_d_loss)
g_loss_list.append(_g_loss)
sim_reg_list.append(_sim_reg)
step_list.append(i)
if i % 1000 == 999:
utils.save_plot(step_list, g_loss_list,
os.path.join(result_dir, 'g_loss.jpg'),
title_name='SCGAN on ' + FLAGS.dataset_type.upper(), y_label_name='g_loss')
utils.save_plot(step_list, d_loss_list,
os.path.join(result_dir, 'd_loss.jpg'),
title_name='SCGAN on ' + FLAGS.dataset_type.upper(), y_label_name='d_loss')
utils.save_plot(step_list, sim_reg_list,
os.path.join(result_dir ,'sim_reg.jpg'),
title_name='SCGAN on ' + FLAGS.dataset_type.upper(), y_label_name='sim_reg')
if i % 300 == 299:
samples, = sess.run([fake_images], feed_dict={z:sample_z, c:sample_c})
utils.save_images(samples[:30][...,::-1], [3, 10], os.path.join(
result_dir, 'step_{}.png'.format(i+1)), norm='[-1,1]')
if i % 10000 == 9999:
saver.save(sess, os.path.join(checkpoint_dir, 'model.ckpt'), global_step=i+1)
# the last batch
saver.save(sess, os.path.join(checkpoint_dir, 'model.ckpt'), global_step=num_batches)
def test():
assert 0<=FLAGS.con_dim<=1, 'The con_dim must be 0 or 1.'
lins = np.linspace(0., 1., 10)
image_list = []
ckpt = tf.train.latest_checkpoint(checkpoint_dir)
# ckpt = 'E:/python_workspace/paper-scgan-copy/checkpoint/scgan_svhn_continuous/model.ckpt-100000'
with tf.Session() as sess:
saver.restore(sess, ckpt)
test_z = np.random.normal(size=[32, FLAGS.z_dim])
test_c = np.zeros([32, 2])
test_c[:, 1-FLAGS.con_dim] = 0.5 + np.random.normal(0.0, 0.001, 32)
for i in range(10):
test_c[:, FLAGS.con_dim] = lins[i] + np.random.normal(0.0, 0.001, 32)
samples, = sess.run([fake_images], feed_dict={z:test_z, c:test_c})
image_list.append(samples.reshape([32, -1]))
images = np.concatenate(image_list, axis=0).reshape((10, 32, 32, 32, 3))
images = np.transpose(images, [1,0,2,3,4])
images = images.reshape((-1, 32, 32, 3))
utils.save_images(images[...,::-1], [32, 10], 'svhn_c%d.png' % FLAGS.con_dim, norm='[-1,1]')
np.save('svhn_c%d.npy' % FLAGS.con_dim, images)
def main(_):
if FLAGS.train:
train()
else:
test()
if __name__ == '__main__':
tf.app.run()