-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_sparse.py
86 lines (67 loc) · 2.96 KB
/
main_sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from sklearn.utils.estimator_checks import check_estimator
from sklearn.model_selection import GridSearchCV
import argparse
from pmf import *
from util import *
import numpy as np
def warn(*args, **kwargs):
pass
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
warnings.warn = warn
data = np.load("data.npz")
items = data["item_id"]
users = data["user_id"]
ratings = data["rating"]
num_user = int(np.amax(users)) + 1
num_item = int(np.amax(items)) + 1
total_sample = items.shape[0]
shuffled_ids = np.arange(items.shape[0])
np.random.shuffle(shuffled_ids)
num_train = int(0.2 * total_sample)
num_test = int(0.8 * total_sample)
train_items = items[shuffled_ids[np.arange(num_train)]].squeeze()
train_users = users[shuffled_ids[np.arange(num_train)]].squeeze()
train_ratings = ratings[shuffled_ids[np.arange(num_train)]].squeeze()
test_items = items[shuffled_ids[np.arange(num_train, total_sample)]].squeeze()
test_users = users[shuffled_ids[np.arange(num_train, total_sample)]].squeeze()
test_ratings = ratings[shuffled_ids[np.arange(num_train, total_sample)]].squeeze()
train = np.array([train_users, train_items]).transpose(1, 0)
test = np.array([test_users, test_items]).transpose(1, 0)
pmf = PMF(K=2, lr=0.025, lambda_u=1, lambda_v=0.1, max_epoch=15, batch_size=50, num_user=num_user, num_item=num_item, verbose=False)
parser = argparse.ArgumentParser(description='COMP5212 Programming Project 3')
parser.add_argument('--task', default="train", type=str,
help='first, second, predict')
args = parser.parse_args()
print("num_user=", num_user)
print("num_item=", num_item)
if args.task == "task1":
# FIRST SCENARIO
print("task1")
parameters = {'K':[2], 'lambda_u':[0.1, 1, 10, 100], 'lambda_v':[0.1, 1, 10, 100]}
clf = GridSearchCV(pmf, parameters, scoring=rmse, cv=5, verbose=1)
clf.fit(train, train_ratings)
print("mean fit time:",clf.cv_results_["mean_fit_time"])
print("mean score time:",clf.cv_results_["mean_score_time"])
print("mean train score:",clf.cv_results_["mean_train_score"])
print("mean test score:",clf.cv_results_["mean_test_score"])
elif args.task == "task2":
# SECOND SCENARIO
print("task2")
parameters = {'K':[1,2,3,4,5], 'lambda_u':[1], 'lambda_v':[0.1]}
clf = GridSearchCV(pmf, parameters, scoring=rmse, cv=5, verbose=1)
clf.fit(train, train_ratings)
print("mean fit time:",clf.cv_results_["mean_fit_time"])
print("mean score time:",clf.cv_results_["mean_score_time"])
print("mean train score:",clf.cv_results_["mean_train_score"])
print("mean test score:",clf.cv_results_["mean_test_score"])
elif args.task == "predict":
# PREDICTION
print("predict")
pmf.fit(train, train_ratings)
start_time = time.time()
test_pred = pmf.predict(test)
print(rmse_func(test_ratings, test_pred), "time=", time.time() - start_time, "s")
else:
print("task is not found. Require (task1, task2, predict)")
print("e.g. python main_sparse.py --task=task1")