diff --git a/README.html b/README.html
index 0e18733..b23c67d 100644
--- a/README.html
+++ b/README.html
@@ -605,7 +605,7 @@
oolong ![]()
-
![Codecov test coverage]()
+
![Codecov test coverage]()
diff --git a/overview_gh.md b/overview_gh.md
index dc4a7b2..d4738d7 100644
--- a/overview_gh.md
+++ b/overview_gh.md
@@ -198,18 +198,18 @@ Get a summary of the two objects.
``` r
summarize_oolong(oolong_test_rater1, oolong_test_rater2)
-#> New names:
-#> * NA -> ...1
-#> * NA -> ...2
#> Mean model precision: 0.25
#> Quantiles of model precision: 0.15, 0.2, 0.25, 0.3, 0.35
-#> P-value of the model precision (H0: Model precision is not better than random guess): 0.116965422720289
+#> P-value of the model precision
+#> (H0: Model precision is not better than random guess): 0.117
#> Krippendorff's alpha: -0.04
-#> K Precision: 0, 0, 0, 0, 0, 1, 0, 0, 0.5, 0, 0.5, 0, 0, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0.5
+#> K Precision:
+#> 0, 0, 0, 0, 0, 1, 0, 0, 0.5, 0, 0.5, 0, 0, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0.5
#> Mean TLO: -2.19
#> Median TLO: -2.71
-#> Quantiles of TLO: -5.30060892321449, -3.43501604695058, -2.71123793694549, 0, 0
-#> P-Value of the median TLO (H0: Median TLO is not better than random guess): 0.186
+#> Quantiles of TLO: -5.3, -3.44, -2.71, 0, 0
+#> P-Value of the median TLO
+#> (H0: Median TLO is not better than random guess): 0.186
```
### About the p-values
@@ -316,7 +316,7 @@ abstracts_dfm
``` r
oolong_test <- create_oolong(abstracts_warplda, abstracts$text, input_dfm = abstracts_dfm)
-#> INFO [17:37:58.107] early stopping at 50 iteration
+#> INFO [14:53:12.207] early stopping at 50 iteration
oolong_test
#> An oolong test object with k = 20, 0 coded.
#> Use the method $do_word_intrusion_test() to do word intrusion test.
@@ -445,8 +445,8 @@ summarize_oolong(oolong_test, target_value = all_afinn_score)
#> * NA -> ...1
#> `geom_smooth()` using formula 'y ~ x'
#> `geom_smooth()` using formula 'y ~ x'
-#> Correlation: 0.718 (p = 0)
-#> Effect of content length: -0.323 (p = 0.164)
+#> Correlation: 0.718 (p = 4e-04)
+#> Effect of content length: -0.323 (p = 0.1643)
```
### Suggested workflow
@@ -520,9 +520,9 @@ acceptable cut-off.
``` r
res
-#> Krippendorff's Alpha: 0.931443661971831
-#> Correlation: 0.744 (p = 0)
-#> Effect of content length: -0.323 (p = 0.164)
+#> Krippendorff's Alpha: 0.931
+#> Correlation: 0.744 (p = 2e-04)
+#> Effect of content length: -0.323 (p = 0.1643)
```
``` r