This repository was archived by the owner on Oct 13, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualizer.py
91 lines (80 loc) · 3.27 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import json
import matplotlib.pyplot as plt
import numpy as np
import glob
import pandas as pd
def read_metrics(algorithm):
files = glob.glob(f'metrics_{algorithm}_node_*.json')
data = {'convergence_time': [], 'message_count': [], 'node_id': []}
for file in files:
with open(file, 'r') as f:
metrics = json.load(f)
data['convergence_time'].append(metrics['convergence_time'])
data['message_count'].append(metrics['message_count'])
data['node_id'].append(metrics['node_id'])
return data
def plot_average_convergence_time(data):
algorithms = list(data.keys())
averages = [np.mean(data[alg]['convergence_time']) for alg in algorithms]
fig, ax = plt.subplots()
ax.bar(algorithms, averages, color='lightblue')
ax.set_xlabel('Algorithm')
ax.set_ylabel('Average Convergence Time (s)')
ax.set_title('Average Convergence Time by Algorithm')
# Add a table below the chart
cell_text = [[f"{np.mean(data[alg]['convergence_time']):.4f}"] for alg in algorithms]
table = plt.table(cellText=cell_text, rowLabels=algorithms, colLabels=['Average Time (s)'],
cellLoc='center', rowLoc='center', loc='bottom', bbox=[0.25, -0.6, 0.5, 0.5])
plt.subplots_adjust(left=0.2, bottom=0.4)
plt.show()
def create_pandas_table(data):
df_list = []
for alg, metrics in data.items():
if alg in ['bully', 'ring']:
notation = r'$O(n^2)$' if alg == 'bully' else r'$O(n)$'
df = pd.DataFrame({
'Algorithm': [alg] * len(metrics['convergence_time']),
'Node ID': metrics['node_id'],
'Convergence Time': metrics['convergence_time'],
'Message Count': metrics['message_count'],
'O Notation': [notation] * len(metrics['convergence_time'])
})
else:
df = pd.DataFrame({
'Algorithm': [alg] * len(metrics['convergence_time']),
'Node ID': metrics['node_id'],
'Convergence Time': metrics['convergence_time']
})
df_list.append(df)
df_all = pd.concat(df_list, ignore_index=True)
return df_all
def save_table_as_image(df, filename):
fig, ax = plt.subplots(figsize=(12, 6)) # Adjust size as needed
ax.axis('tight')
ax.axis('off')
table = ax.table(cellText=df.values, colLabels=df.columns, cellLoc='center', loc='center')
plt.savefig(filename, bbox_inches='tight')
def plot_distribution(data):
fig, ax = plt.subplots()
for alg, metrics in data.items():
convergence_times = metrics['convergence_time']
ax.hist(convergence_times, bins=10, alpha=0.5, label=alg)
ax.set_xlabel('Convergence Time (s)')
ax.set_ylabel('Frequency')
ax.set_title('Distribution of Convergence Times')
ax.legend(loc='best')
plt.show()
def main():
algorithms = ['bully', 'ring', 'pow', 'pos']
all_data = {}
for alg in algorithms:
data = read_metrics(alg)
if data['node_id']:
all_data[alg] = data
if all_data:
plot_average_convergence_time(all_data)
df_all = create_pandas_table(all_data)
save_table_as_image(df_all, 'convergence_times_table.png')
plot_distribution(all_data)
if __name__ == '__main__':
main()