-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
522 lines (424 loc) · 20.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
import numpy as np
import time
import torch
import collections
from packaging import version
from torch.distributions import Categorical
import torch.nn as nn
from transformers import Trainer
from transformers import logging
from transformers.file_utils import is_torch_tpu_available
from transformers.trainer_pt_utils import (
get_parameter_names,
)
from transformers.utils import (
is_sagemaker_mp_enabled
)
from transformers.models.llama.modeling_llama import LlamaAttention,LlamaMLP
from transformers.models.opt.modeling_opt import OPTAttention
from transformers.models.mistral.modeling_mistral import MistralAttention
if version.parse(torch.__version__) >= version.parse("1.6"):
from torch.cuda.amp import autocast
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
import torch_xla.distributed.parallel_loader as pl
logger = logging.get_logger(__name__)
class LisaTrainer(Trainer):
def get_alignment_dataloader(self,alignment_dataset) -> DataLoader:
"""
Returns the training [`~torch.utils.data.DataLoader`].
Will use no sampler if `train_dataset` does not implement `__len__`, a random sampler (adapted to distributed
training if necessary) otherwise.
Subclass and override this method if you want to inject some custom behavior.
"""
from transformers.trainer_utils import (
seed_worker
)
from transformers.trainer_pt_utils import (
LengthGroupedSampler,
)
from torch.utils.data import DataLoader, RandomSampler
data_collator = self.data_collator
sampler = RandomSampler(alignment_dataset)
dataloader_params = {
"batch_size": self._train_batch_size,
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
}
if not isinstance(alignment_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = sampler
dataloader_params["drop_last"] = self.args.dataloader_drop_last
dataloader_params["worker_init_fn"] = seed_worker
return self.accelerator.prepare(DataLoader(alignment_dataset, **dataloader_params))
def init(self, alignment_dataset):
if self.args.alignment_step!=0 and self.args.guide_data_num>0:
self.status = "alignment"
else:
self.status = "finetune"
self.alignment_weights ={}
self.finetune_weights ={}
# self.gamma ={}
for name, param in self.model.named_parameters():
if param.requires_grad:
self.alignment_weights[name] = param.data.detach().clone()
self.finetune_weights[name] = param.data.detach().clone()
# self.gamma[name]= torch.zeros_like(param)
self.clock = 0
self.steps = 0
if self.args.guide_data_num>0:
self.alignment_dataloader = self.get_alignment_dataloader(alignment_dataset)
self.data_iter = iter(self.alignment_dataloader)
def end_training(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
if self.status == "alignment":
self.alignment_weights[name] = param.data.detach().clone()
else:
self.finetune_weights[name] = param.data.detach().clone()
def switch_model(self):
sum_drift =0
if self.status == "alignment":
for name, param in self.model.named_parameters():
if param.requires_grad:
self.finetune_weights[name] = param.data.detach().clone()
sum_drift += torch.norm(self.finetune_weights[name] - self.alignment_weights[name])**2
print("finetuning drift to consensus{}".format(sum_drift))
else:
for name, param in self.model.named_parameters():
if param.requires_grad:
self.alignment_weights[name] = param.data.detach().clone()
sum_drift += torch.norm(self.finetune_weights[name] - self.alignment_weights[name])**2
print("alignment drift to consensus{}".format(sum_drift))
def sample_from_alignment(self):
# Get a batch
try:
batch = next(self.data_iter)
except (StopIteration):
# If the iterator is exhausted, create a new iterator
self.data_iter = iter(self.alignment_dataloader)
batch = next(self.data_iter)
return batch
def check_mode(self, inputs):
if self.status == "alignment":
if self.clock% (self.args.alignment_step ) == 0 and self.steps!=0 and self.args.finetune_step!=0:
self.status ="finetune"
self.switch_model()
# print("swith from alignment to finetune {}".format(self.steps))
self.clock=0
else:
# alignment need another input
inputs = self.sample_from_alignment()
else:
if self.clock% ( self.args.finetune_step ) == 0 and self.steps!=0 and self.args.alignment_step!=0 and self.args.guide_data_num>0:
self.status ="alignment"
self.switch_model()
# alignment need another input
inputs = self.sample_from_alignment()
# print("swith from finetune to alignment {}".format(self.steps))
self.clock=0
return inputs
def training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> torch.Tensor:
# may change input due to mode change
inputs = self.check_mode(inputs)
model.train()
inputs = self._prepare_inputs(inputs)
def step():
if is_sagemaker_mp_enabled():
loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps)
return loss_mb.reduce_mean().detach().to(self.args.device)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.status =="alignment":
# print("alignment_loss_prev: {}".format(loss.item()))
# don't do proximal in the inital 10% of steps. It will downgrade benign accuracy'
if self.steps>0.1* len(self.get_train_dataloader()) * self.args.num_train_epochs:
for name, param in model.named_parameters():
if param.requires_grad and self.args.rho>0:
loss += self.args.rho/2* torch.norm( param- self.finetune_weights[name])**2
else:
if self.steps>0.1* len(self.get_train_dataloader()) * self.args.num_train_epochs:
for name, param in model.named_parameters():
# we observe that for Gsm8k, proximal term will hurt convergence. Don't do proximal for the first few rounds.
if param.requires_grad and self.args.rho>0:
# loss += (- torch.sum(self.gamma[name] * param )) + self.args.rho/2* torch.norm( param- self.alignment_weights[name])**2
loss += self.args.rho/2* torch.norm( param- self.alignment_weights[name])**2
# print("finetune_loss: {}".format(loss.item()))
if self.do_grad_scaling:
self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
self.accelerator.backward(loss)
# print("gere2")
return loss
loss = step()
self.steps+=1
self.clock+=1
return loss.detach() / self.args.gradient_accumulation_steps
def get_leaf_modules_with_grad(module):
# # print([name for name,param in module.named_parameters()])
# if len(list(module.children())) == 0 and any(p.requires_grad for p in module.parameters()) and "lora_B" in module._get_name():
# return [module]
# else:
# return [submodule for child in module.children() for submodule in get_leaf_modules_with_grad(child)]
module_list= []
for name, module in module.named_modules():
# if "lora_B" in name and "v_proj" in name and len(list(module.children())) == 0:
# module_list+= [module]
if isinstance(module,LlamaAttention) or isinstance(module, OPTAttention) or isinstance(module, MistralAttention):
module_list+= [module]
# # print(module_list)
return module_list
class VaccineTrainer(Trainer):
def training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> torch.Tensor:
model.train()
inputs = self._prepare_inputs(inputs)
def step():
if is_sagemaker_mp_enabled():
loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps)
return loss_mb.reduce_mean().detach().to(self.args.device)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.do_grad_scaling:
self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
self.accelerator.backward(loss)
# print("gere2")
return loss
# if isinstance(self.optimizer,ESAM ):
# print("calling sam")
self.vaccine_state = {}
self.vaccine_state ["hooks"] = []
self.vaccine_state ["gradient"] = {}
self.pre_first_step(model)
step()
self.after_first_step(model)
model.zero_grad()
self.pre_second_step(model)
loss = step()
self.after_second_step(model)
# for param in model.parameters():
# if param.grad is not None:
# param.grad*= 1/2
# else:
# loss = step()
return loss.detach() / self.args.gradient_accumulation_steps
@torch.no_grad()
def pre_first_step(self, model ):
def track_gradient_hook(module, grad_input, grad_output):
# Store the gradients for the current layer
self.vaccine_state["gradient"][module] = grad_output[0].detach().clone()/self.args.gradient_accumulation_steps
# print(grad_output[0])
def apply_backward_hooks_recursive(module, hook_fn, hooks):
hook = module.register_backward_hook(hook_fn)
hooks.append(hook) # Append the hook to the list
# Call the function with the initial empty hooks list
leaf_modules_with_grad = get_leaf_modules_with_grad(model)
for layer in leaf_modules_with_grad:
self.vaccine_state["gradient"][layer] = 0
apply_backward_hooks_recursive(layer, track_gradient_hook, self.vaccine_state["hooks"])
@torch.no_grad()
def pre_second_step(self, model):
def purturbation_hook(module, input, output):
# Modify the output, for example, by adding a perturbatio
perturbation = self.vaccine_state["gradient"][module]
# print(perturbation[0,1,:])
# # print(output.shape)
# print(output[0,1,:])
output[0].data =output[0] + perturbation
# print(output.shape)
return output
# Register forward hooks for adding perturbation
def apply_purturbation_hooks_recursive(module, hook_fn, hooks):
hook = module.register_forward_hook(hook_fn)
hooks.append(hook)
leaf_modules_with_grad = get_leaf_modules_with_grad(model)
for layer in leaf_modules_with_grad:
# print(layer._get_name())
# Apply hooks to all layers, including nested Sequential blocks
apply_purturbation_hooks_recursive(layer, purturbation_hook, self.vaccine_state["hooks"])
@torch.no_grad()
def after_first_step(self, model):
for hook in self.vaccine_state["hooks"]:
hook.remove()
self.vaccine_state["hooks"] = []
# print(self.vaccine_state["gradient"].items())
grad_norm = self._grad_norm(self.vaccine_state["gradient"])
# logging.info(grad_norm)
# logging.info("norm{}".format(grad_norm))
for module in self.vaccine_state["gradient"]:
# grad_norm = self._grad_norm(self.vaccine_state["gradient"][module])
grad = self.vaccine_state["gradient"][module]
scale = self. args. rho / (grad_norm +1e-7)
e_r = (grad)* scale
self.vaccine_state["gradient"][module] = e_r.detach().clone()
@torch.no_grad()
def after_second_step(self, model):
# disable hook here
# for module in self.vaccine_state["e_r"]:
# module.weight.data -= self.vaccine_state["e_r"][module]
for hook in self.vaccine_state["hooks"]:
hook.remove()
self.vaccine_state["hooks"] = []
# torch.nn.utils.clip_grad_norm_(model.parameters(), 10)
@torch.no_grad()
def _grad_norm(self,poison_grads_representation):
norm = torch.norm(
torch.stack([
#original sam
( poison_grads_representation[name] ).norm(p=2)
#asam
# ((torch.abs(p) if group["adaptive"] else 1.0) * p.grad).norm(p=2).to(shared_device)
for name in poison_grads_representation
]),
p=2
)
# norm = ( poison_grads_representation ).norm(p=2)
return norm
class RandomVaccineTrainer(Trainer):
def training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> torch.Tensor:
model.train()
inputs = self._prepare_inputs(inputs)
def step():
if is_sagemaker_mp_enabled():
loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps)
return loss_mb.reduce_mean().detach().to(self.args.device)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.do_grad_scaling:
self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
self.accelerator.backward(loss)
# print("gere2")
return loss
self.vaccine_state = {}
self.vaccine_state ["hooks"] = []
self.vaccine_state ["gradient"] = {}
self.pre_second_step(model)
loss = step()
self.after_second_step(model)
# for param in model.parameters():
# if param.grad is not None:
# param.grad*= 1/2
# else:
# loss = step()
return loss.detach() / self.args.gradient_accumulation_steps
@torch.no_grad()
def pre_second_step(self, model):
def purturbation_hook(module, input, output):
# Modify the output, for example, by adding a perturbatio
# print(perturbation[0,1,:])
# # print(output.shape)
# print(output[0,1,:])
variance = self.args.rho
# Generate samples from a Gaussian distribution
gaussian_samples = variance**(1/2) * torch.randn_like(output[0] )
output[0].data =output[0] + gaussian_samples
# print(output.shape)
return output
# Register forward hooks for adding perturbation
def apply_purturbation_hooks_recursive(module, hook_fn, hooks):
hook = module.register_forward_hook(hook_fn)
hooks.append(hook)
leaf_modules_with_grad = get_leaf_modules_with_grad(model)
for layer in leaf_modules_with_grad:
# print(layer._get_name())
# Apply hooks to all layers, including nested Sequential blocks
apply_purturbation_hooks_recursive(layer, purturbation_hook, self.vaccine_state["hooks"])
@torch.no_grad()
def after_second_step(self, model):
# disable hook here
# for module in self.vaccine_state["e_r"]:
# module.weight.data -= self.vaccine_state["e_r"][module]
for hook in self.vaccine_state["hooks"]:
hook.remove()
self.vaccine_state["hooks"] = []
# torch.nn.utils.clip_grad_norm_(model.parameters(), 10)
@torch.no_grad()
def _grad_norm(self,poison_grads_representation):
norm = torch.norm(
torch.stack([
( poison_grads_representation[name] ).norm(p=2)
for name in poison_grads_representation
]),
p=2
)
# norm = ( poison_grads_representation ).norm(p=2)
return norm
class FITrainer(Trainer):
def init(self, model ):
self.initial_weights = {}
for name, module in model.named_modules():
if "lora" in name and len(list(module.children()))==0 and isinstance(module, torch.nn.Linear):
self.initial_weights[module] = module.weight.data.detach().clone()
self.round = 0
def training_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
) -> torch.Tensor:
model.train()
inputs = self._prepare_inputs(inputs)
def step():
if is_sagemaker_mp_enabled():
loss_mb = smp_forward_backward(model, inputs, self.args.gradient_accumulation_steps)
return loss_mb.reduce_mean().detach().to(self.args.device)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
reg = 0
for name, module in model.named_modules():
if "lora" in name and len(list(module.children()))==0 and isinstance(module, torch.nn.Linear):
reg += self.args.lamb * torch.sum(self.fisher_vector[module]* torch.square(module.weight -self.initial_weights[module] ))
# reg += self.args.lamb * torch.sum(torch.square(module.weight -self.initial_weights[module] ))
# print(reg)
loss +=reg
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.do_grad_scaling:
self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
self.accelerator.backward(loss)
return loss
if self.round==0:
self. fisher_vector = {module : 0 for name, module in model.named_modules() if "lora" in name and len(list(module.children()))==0 and isinstance(module, torch.nn.Linear)}
eval_dataloader = self.get_eval_dataloader(self.eval_dataset)
for stepsize, old_inputs in enumerate(eval_dataloader):
# Update the observed num examples
# print(inputs)
model.zero_grad()
old_inputs = self._prepare_inputs(old_inputs)
with self.compute_loss_context_manager():
loss = self.compute_loss(model, old_inputs)
self.accelerator.backward(loss)
for name, module in model.named_modules():
if "lora" in name and len(list(module.children()))==0 and isinstance(module, torch.nn.Linear):
self.fisher_vector[module] += torch.square(module.weight.grad.data.detach().clone())
# print(self.fisher_vector[module])
print(loss)
loss = step()
self.round+=1
return loss.detach() / self.args.gradient_accumulation_steps