forked from onnela-lab/covid-campus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeta006_noNPI_vax_locom.py
150 lines (122 loc) · 6.34 KB
/
beta006_noNPI_vax_locom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
Author: Hali Hambridge
This code was run in parallel on a computing cluster using the following bash command:
python beta006_noNPI_vax_locom.py $SLURM_ARRAY_TASK_ID
Dependencies: pandas, networkx, numpy, matplotlib, itertools, time
-------------------
Parameter Settings
-------------------
Transmission probability (beta) = 0.006157 per 5 minute exposure, roughly R0 ~ 3.0
Testing Frequencies: every 3, 7, 14, 28 days and symptomatic only
Proportion Vaccinated: 0%, 20%, 40%, 60%, 80%
Probability of External Infection: iid normal(loc = 0.0005, scale = 0.0001),
roughly 0.3 people infected by outside source each day in a fully susceptible population,
corresponds to low community transmission scenario in paper
Proportion Mask Wearing: 0%
Proportion Social Distancing: 0%
-------------------
File Outputs
-------------------
beta006_noNPI_vax_locom_detailed_0.csv
beta006_noNPI_vax_locom_detailed_1.csv
beta006_noNPI_vax_locom_detailed_2.csv
beta006_noNPI_vax_locom_detailed_3.csv
beta006_noNPI_vax_locom_detailed_4.csv
"""
import os
import sys
import pandas as pd
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import itertools
import time
from testing_freq import *
from utils import *
# Parse command line arguments
TASKID = int(sys.argv[1])
myseed = TASKID*50000
print('TASKID: ', TASKID)
print('myseed: ', myseed)
sim_name = 'beta006_noNPI_vax_locom'
test_freqs = [0, 3, 7, 14, 28]
time_step = 86400 # one day
nreps = 20
# Read Copenhagen Network Study data
bt = pd.read_csv('bt_data_clean.csv', header = 0, names = ['timestamp','user_a', 'user_b', 'rssi'])
# Construct adjacency matrices
adj_mats, df = construct_adj_mat(bt, time_step = time_step, data_loops = 3, dist_thres = -75)
# Set parameters for simulations
disease_params = dict()
disease_params['asymp'] = 0.3 # 30% remain symptom free for the duration, other pre-symptomatic
disease_params['beta'] = gen_trans_prob(n_nodes = adj_mats.shape[1], univ_val = 0.006157) # Roughly corresponds to R0 = 3
disease_params['sigma_a'] = 1/3 # average incubation period is 3 days
disease_params['sigma_s'] = 1/3
disease_params['gamma_a'] = 1/7 # mild to moderate infectious no longer than 10 days (per CDC)
disease_params['gamma_s'] = 1/12 # severe illness infectious no longer than 20 days after symptom onset
disease_params['n_time_day'] = 1
test_params = dict()
test_params['spec'] = 0.99
test_params['symp_test_delay'] = gen_symp_test_delay(n_nodes = adj_mats.shape[1], univ_delay = 3)
test_params['time_dep'] = True
test_params['time_dep_type'] = 'W'
# % of people seeking testing at each time step, even though not sick -- this is about 3 people per day
test_params['false_symp'] = 0.005
quar_params = dict()
quar_params['quar_delay'] = gen_quar_delay(n_nodes = adj_mats.shape[1], univ_delay = 1)
quar_params['quar_len'] = 10 # 10 day quarantine
# Create the beta scenarios
vax_props = np.linspace(0, 0.8, 5)
beta_scenarios = list(vax_props)
# Create empty df for output
df_out = pd.DataFrame()
# Create empty df for detailed output
det_df_out = pd.DataFrame()
# Loop through each of the beta scenarios
for scenario in beta_scenarios:
p_vax = scenario
"""
RUN SIMULATION FOR TESTING SCENARIOS
"""
# Loop through each of the testing frequencies to consider
for tf in test_freqs:
# Set the testing frequency
test_params['test_freq'] = tf
# Run simulation with testing and isolation
for i in range(nreps):
# Set the parameters that are probabilistic
rs = np.random.RandomState(myseed)
disease_params['ext_inf'] = rs.normal(loc = 0.0005, scale = 0.0001, size = 1) # about 0.3 people infected by outside source each day in a fully susceptible population
while disease_params['ext_inf']<0:
disease_params['ext_inf'] = rs.normal(loc = 0.0005, scale = 0.0001, size = 1)
disease_params['init_status'] = gen_init_status(n_nodes = adj_mats.shape[1], asymp = disease_params['asymp'], n_init_inf = 1, n_init_rec = int(adj_mats.shape[1]*p_vax), seed = myseed)
test_params['nc_schd'] = rs.normal(loc = 0.025, scale = 0.01, size = 1) # Percent non-compliant with scheduled testing
while test_params['nc_schd']<0:
test_params['nc_schd'] = rs.normal(loc = 0.025, scale = 0.01, size = 1) # Percent non-compliant with scheduled testing
test_params['nc_symp'] = rs.normal(loc = 0.25, scale = 0.1, size = 1) # Percent non-compliant with symptomatic testing
while test_params['nc_symp']<0:
test_params['nc_symp'] = rs.normal(loc = 0.25, scale = 0.1, size = 1) # Percent non-compliant with symptomatic testing
quar_params['quar_comp'] = gen_quar_comp(n_nodes = adj_mats.shape[1], seed = myseed)
# Instantiate the simulation class
testin = TestFreq(adj_mats, disease_params, test_params, quar_params)
# Run the simulation
(ia_nodes_byt, is_nodes_byt, test_pos_schd_byt, test_pos_symp_byt, q_schd_byt, q_symp_byt) = testin.sim_spread_test(seed = myseed)
# Save detailed results
tmpdf = pd.DataFrame.from_dict({'rep': np.repeat(i+1, repeats = len(ia_nodes_byt)), 'p_vax': np.repeat(p_vax, repeats = len(ia_nodes_byt)),
'tstep': list(range(len(ia_nodes_byt))), 'ext_inf_ct': np.repeat(testin.ext_ict, repeats = len(ia_nodes_byt)),
'test_freq': np.repeat(tf, repeats = len(ia_nodes_byt)),
'ia_nodes': ia_nodes_byt, 'is_nodes': is_nodes_byt, 'test_pos_schd': test_pos_schd_byt, 'test_pos_symp': test_pos_symp_byt,
'q_schd': q_schd_byt, 'q_symp': q_symp_byt})
det_df_out = det_df_out.append(tmpdf, ignore_index = True)
# Save aggregate results
# Flatten the results
flat_ia = [x for l in ia_nodes_byt for x in l]
flat_is = [x for l in is_nodes_byt for x in l]
# Save the results
tmpdf = pd.DataFrame.from_dict({'rep': [i+1], 'test_freq': [tf], 'p_vax': [p_vax], 'cum_uniq_inf': [len(set(flat_ia + flat_is))]})
df_out = df_out.append(tmpdf, ignore_index = True)
# Update the seed
myseed +=1
# Save out the pandas dataframe results
df_out.to_csv(sim_name + '_' + str(TASKID) + '.csv', index = False)
det_df_out.to_csv(sim_name + '_detailed_' + str(TASKID) + '.csv', index = False)