forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrec_img_aug.py
533 lines (455 loc) · 16.5 KB
/
rec_img_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import cv2
import numpy as np
import random
from PIL import Image
from .text_image_aug import tia_perspective, tia_stretch, tia_distort
class RecAug(object):
def __init__(self, use_tia=True, aug_prob=0.4, **kwargs):
self.use_tia = use_tia
self.aug_prob = aug_prob
def __call__(self, data):
img = data['image']
img = warp(img, 10, self.use_tia, self.aug_prob)
data['image'] = img
return data
class ClsResizeImg(object):
def __init__(self, image_shape, **kwargs):
self.image_shape = image_shape
def __call__(self, data):
img = data['image']
norm_img = resize_norm_img(img, self.image_shape)
data['image'] = norm_img
return data
class NRTRRecResizeImg(object):
def __init__(self, image_shape, resize_type, padding=False, **kwargs):
self.image_shape = image_shape
self.resize_type = resize_type
self.padding = padding
def __call__(self, data):
img = data['image']
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
image_shape = self.image_shape
if self.padding:
imgC, imgH, imgW = image_shape
# todo: change to 0 and modified image shape
h = img.shape[0]
w = img.shape[1]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
norm_img = np.expand_dims(resized_image, -1)
norm_img = norm_img.transpose((2, 0, 1))
resized_image = norm_img.astype(np.float32) / 128. - 1.
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
data['image'] = padding_im
return data
if self.resize_type == 'PIL':
image_pil = Image.fromarray(np.uint8(img))
img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
img = np.array(img)
if self.resize_type == 'OpenCV':
img = cv2.resize(img, self.image_shape)
norm_img = np.expand_dims(img, -1)
norm_img = norm_img.transpose((2, 0, 1))
data['image'] = norm_img.astype(np.float32) / 128. - 1.
return data
class RecResizeImg(object):
def __init__(self,
image_shape,
infer_mode=False,
character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
padding=True,
**kwargs):
self.image_shape = image_shape
self.infer_mode = infer_mode
self.character_dict_path = character_dict_path
self.padding = padding
def __call__(self, data):
img = data['image']
if self.infer_mode and self.character_dict_path is not None:
norm_img = resize_norm_img_chinese(img, self.image_shape)
else:
norm_img = resize_norm_img(img, self.image_shape, self.padding)
data['image'] = norm_img
return data
class SRNRecResizeImg(object):
def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
self.image_shape = image_shape
self.num_heads = num_heads
self.max_text_length = max_text_length
def __call__(self, data):
img = data['image']
norm_img = resize_norm_img_srn(img, self.image_shape)
data['image'] = norm_img
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)
data['encoder_word_pos'] = encoder_word_pos
data['gsrm_word_pos'] = gsrm_word_pos
data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
return data
class SARRecResizeImg(object):
def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
self.image_shape = image_shape
self.width_downsample_ratio = width_downsample_ratio
def __call__(self, data):
img = data['image']
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
img, self.image_shape, self.width_downsample_ratio)
data['image'] = norm_img
data['resized_shape'] = resize_shape
data['pad_shape'] = pad_shape
data['valid_ratio'] = valid_ratio
return data
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
imgC, imgH, imgW_min, imgW_max = image_shape
h = img.shape[0]
w = img.shape[1]
valid_ratio = 1.0
# make sure new_width is an integral multiple of width_divisor.
width_divisor = int(1 / width_downsample_ratio)
# resize
ratio = w / float(h)
resize_w = math.ceil(imgH * ratio)
if resize_w % width_divisor != 0:
resize_w = round(resize_w / width_divisor) * width_divisor
if imgW_min is not None:
resize_w = max(imgW_min, resize_w)
if imgW_max is not None:
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
resize_w = min(imgW_max, resize_w)
resized_image = cv2.resize(img, (resize_w, imgH))
resized_image = resized_image.astype('float32')
# norm
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
resize_shape = resized_image.shape
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
padding_im[:, :, 0:resize_w] = resized_image
pad_shape = padding_im.shape
return padding_im, resize_shape, pad_shape, valid_ratio
def resize_norm_img(img, image_shape, padding=True):
imgC, imgH, imgW = image_shape
h = img.shape[0]
w = img.shape[1]
if not padding:
resized_image = cv2.resize(
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
resized_w = imgW
else:
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def resize_norm_img_chinese(img, image_shape):
imgC, imgH, imgW = image_shape
# todo: change to 0 and modified image shape
max_wh_ratio = imgW * 1.0 / imgH
h, w = img.shape[0], img.shape[1]
ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, ratio)
imgW = int(32 * max_wh_ratio)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def resize_norm_img_srn(img, image_shape):
imgC, imgH, imgW = image_shape
img_black = np.zeros((imgH, imgW))
im_hei = img.shape[0]
im_wid = img.shape[1]
if im_wid <= im_hei * 1:
img_new = cv2.resize(img, (imgH * 1, imgH))
elif im_wid <= im_hei * 2:
img_new = cv2.resize(img, (imgH * 2, imgH))
elif im_wid <= im_hei * 3:
img_new = cv2.resize(img, (imgH * 3, imgH))
else:
img_new = cv2.resize(img, (imgW, imgH))
img_np = np.asarray(img_new)
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
img_black[:, 0:img_np.shape[1]] = img_np
img_black = img_black[:, :, np.newaxis]
row, col, c = img_black.shape
c = 1
return np.reshape(img_black, (c, row, col)).astype(np.float32)
def srn_other_inputs(image_shape, num_heads, max_text_length):
imgC, imgH, imgW = image_shape
feature_dim = int((imgH / 8) * (imgW / 8))
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
(feature_dim, 1)).astype('int64')
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
(max_text_length, 1)).astype('int64')
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
[1, max_text_length, max_text_length])
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
[num_heads, 1, 1]) * [-1e9]
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
[1, max_text_length, max_text_length])
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
[num_heads, 1, 1]) * [-1e9]
return [
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2
]
def flag():
"""
flag
"""
return 1 if random.random() > 0.5000001 else -1
def cvtColor(img):
"""
cvtColor
"""
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
delta = 0.001 * random.random() * flag()
hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return new_img
def blur(img):
"""
blur
"""
h, w, _ = img.shape
if h > 10 and w > 10:
return cv2.GaussianBlur(img, (5, 5), 1)
else:
return img
def jitter(img):
"""
jitter
"""
w, h, _ = img.shape
if h > 10 and w > 10:
thres = min(w, h)
s = int(random.random() * thres * 0.01)
src_img = img.copy()
for i in range(s):
img[i:, i:, :] = src_img[:w - i, :h - i, :]
return img
else:
return img
def add_gasuss_noise(image, mean=0, var=0.1):
"""
Gasuss noise
"""
noise = np.random.normal(mean, var**0.5, image.shape)
out = image + 0.5 * noise
out = np.clip(out, 0, 255)
out = np.uint8(out)
return out
def get_crop(image):
"""
random crop
"""
h, w, _ = image.shape
top_min = 1
top_max = 8
top_crop = int(random.randint(top_min, top_max))
top_crop = min(top_crop, h - 1)
crop_img = image.copy()
ratio = random.randint(0, 1)
if ratio:
crop_img = crop_img[top_crop:h, :, :]
else:
crop_img = crop_img[0:h - top_crop, :, :]
return crop_img
class Config:
"""
Config
"""
def __init__(self, use_tia):
self.anglex = random.random() * 30
self.angley = random.random() * 15
self.anglez = random.random() * 10
self.fov = 42
self.r = 0
self.shearx = random.random() * 0.3
self.sheary = random.random() * 0.05
self.borderMode = cv2.BORDER_REPLICATE
self.use_tia = use_tia
def make(self, w, h, ang):
"""
make
"""
self.anglex = random.random() * 5 * flag()
self.angley = random.random() * 5 * flag()
self.anglez = -1 * random.random() * int(ang) * flag()
self.fov = 42
self.r = 0
self.shearx = 0
self.sheary = 0
self.borderMode = cv2.BORDER_REPLICATE
self.w = w
self.h = h
self.perspective = self.use_tia
self.stretch = self.use_tia
self.distort = self.use_tia
self.crop = True
self.affine = False
self.reverse = True
self.noise = True
self.jitter = True
self.blur = True
self.color = True
def rad(x):
"""
rad
"""
return x * np.pi / 180
def get_warpR(config):
"""
get_warpR
"""
anglex, angley, anglez, fov, w, h, r = \
config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
if w > 69 and w < 112:
anglex = anglex * 1.5
z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
# Homogeneous coordinate transformation matrix
rx = np.array([[1, 0, 0, 0],
[0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
0,
-np.sin(rad(anglex)),
np.cos(rad(anglex)),
0,
], [0, 0, 0, 1]], np.float32)
ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
[0, 1, 0, 0], [
-np.sin(rad(angley)),
0,
np.cos(rad(angley)),
0,
], [0, 0, 0, 1]], np.float32)
rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
[0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
r = rx.dot(ry).dot(rz)
# generate 4 points
pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
p3 = np.array([0, h, 0, 0], np.float32) - pcenter
p4 = np.array([w, h, 0, 0], np.float32) - pcenter
dst1 = r.dot(p1)
dst2 = r.dot(p2)
dst3 = r.dot(p3)
dst4 = r.dot(p4)
list_dst = np.array([dst1, dst2, dst3, dst4])
org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
dst = np.zeros((4, 2), np.float32)
# Project onto the image plane
dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]
warpR = cv2.getPerspectiveTransform(org, dst)
dst1, dst2, dst3, dst4 = dst
r1 = int(min(dst1[1], dst2[1]))
r2 = int(max(dst3[1], dst4[1]))
c1 = int(min(dst1[0], dst3[0]))
c2 = int(max(dst2[0], dst4[0]))
try:
ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))
dx = -c1
dy = -r1
T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
ret = T1.dot(warpR)
except:
ratio = 1.0
T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
ret = T1
return ret, (-r1, -c1), ratio, dst
def get_warpAffine(config):
"""
get_warpAffine
"""
anglez = config.anglez
rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
return rz
def warp(img, ang, use_tia=True, prob=0.4):
"""
warp
"""
h, w, _ = img.shape
config = Config(use_tia=use_tia)
config.make(w, h, ang)
new_img = img
if config.distort:
img_height, img_width = img.shape[0:2]
if random.random() <= prob and img_height >= 20 and img_width >= 20:
new_img = tia_distort(new_img, random.randint(3, 6))
if config.stretch:
img_height, img_width = img.shape[0:2]
if random.random() <= prob and img_height >= 20 and img_width >= 20:
new_img = tia_stretch(new_img, random.randint(3, 6))
if config.perspective:
if random.random() <= prob:
new_img = tia_perspective(new_img)
if config.crop:
img_height, img_width = img.shape[0:2]
if random.random() <= prob and img_height >= 20 and img_width >= 20:
new_img = get_crop(new_img)
if config.blur:
if random.random() <= prob:
new_img = blur(new_img)
if config.color:
if random.random() <= prob:
new_img = cvtColor(new_img)
if config.jitter:
new_img = jitter(new_img)
if config.noise:
if random.random() <= prob:
new_img = add_gasuss_noise(new_img)
if config.reverse:
if random.random() <= prob:
new_img = 255 - new_img
return new_img