-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFeCAM.py
1201 lines (1126 loc) · 48 KB
/
FeCAM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import torch
import torch.nn.functional as F
import numpy as np
import pandas as pd
from copy import deepcopy
from main import (
apply_mask_to_weights_of_network,
prepare_network_sparsity,
)
from evaluation import (
evaluate_target_network,
prepare_and_load_weights_for_models,
)
from numpy.testing import assert_array_equal, assert_array_almost_equal
##########################################################################
# Functions from FeCAM, reformatted and with ensuring convergence of SVD
# in _mahalanobis():
# https://github.com/dipamgoswami/FeCAM/blob/main/FeCAM_vit_cifar100.py
def shrink_cov(cov):
diag_mean = np.mean(np.diagonal(cov))
off_diag = np.copy(cov)
np.fill_diagonal(off_diag, 0.0)
mask = off_diag != 0.0
off_diag_mean = (off_diag * mask).sum() / mask.sum()
iden = np.eye(cov.shape[0])
alpha1 = 1
alpha2 = 1
cov_ = (
cov
+ (alpha1 * diag_mean * iden)
+ (alpha2 * off_diag_mean * (1 - iden))
)
return cov_
def normalize_cov(cov):
sd = np.sqrt(np.diagonal(cov)) # standard deviations of the variables
cov = cov / (np.matmul(np.expand_dims(sd, 1), np.expand_dims(sd, 0)))
return cov
def _mahalanobis(dist, cov):
# To ensure that SVD will converge
cov = cov + 1e-8
inv_covmat = np.linalg.pinv(cov)
# pseudo-inverse of an invertible matrix is same as its inverse
left_term = np.matmul(dist, inv_covmat)
mahal = np.matmul(left_term, dist.T)
return np.diagonal(mahal, 0)
##########################################################################
def translate_output_CIFAR_classes(labels, setup, task):
"""
Translate labels of form {0, 1, ..., N-1} to the real labels
of CIFAR100 dataset.
Arguments:
----------
*labels*: (Numpy array | list) contains labels of the form {0, 1, ..., N-1}
where N is the the number of classes in a single task
*setup*: (int) defines how many tasks were created in this
training session
*task*: (int) number of the currently calculated task
Returns:
--------
A numpy array of the same shape like *labels* but with proper
class labels
"""
assert setup in [5, 6, 11, 21]
# 5 tasks: 20 classes in each task
# 6 tasks: 50 initial classes + 5 incremental tasks per 10 classes
# 11 tasks: 50 initial classes + 10 incremental tasks per 5 classes
# 21 tasks: 40 initial classes + 20 incremental tasks per 3 classes
class_orders = [
87, 0, 52, 58, 44, 91, 68, 97, 51, 15,
94, 92, 10, 72, 49, 78, 61, 14, 8, 86,
84, 96, 18, 24, 32, 45, 88, 11, 4, 67,
69, 66, 77, 47, 79, 93, 29, 50, 57, 83,
17, 81, 41, 12, 37, 59, 25, 20, 80, 73,
1, 28, 6, 46, 62, 82, 53, 9, 31, 75,
38, 63, 33, 74, 27, 22, 36, 3, 16, 21,
60, 19, 70, 90, 89, 43, 5, 42, 65, 76,
40, 30, 23, 85, 2, 95, 56, 48, 71, 64,
98, 13, 99, 7, 34, 55, 54, 26, 35, 39
]
if setup in [6, 11]:
no_of_initial_cls = 50
elif setup == 21:
no_of_initial_cls = 40
else:
no_of_initial_cls = 20
if task == 0:
currently_used_classes = class_orders[:no_of_initial_cls]
else:
if setup == 6:
no_of_incremental_cls = 10
elif setup == 11:
no_of_incremental_cls = 5
elif setup == 21:
no_of_incremental_cls = 3
else:
no_of_incremental_cls = 20
currently_used_classes = class_orders[
(no_of_initial_cls + no_of_incremental_cls * (task - 1)) : (
no_of_initial_cls + no_of_incremental_cls * task
)
]
y_translated = np.array([currently_used_classes[i] for i in labels])
return y_translated
def unittest_translate_output_CIFAR_classes():
"""
Unittest of translate_output_CIFAR_classes() function.
"""
# 21 tasks
labels = [i for i in range(40)]
test_1 = translate_output_CIFAR_classes(labels, 21, 0)
gt_1 = [87, 0, 52, 58, 44, 91, 68, 97, 51, 15,
94, 92, 10, 72, 49, 78, 61, 14, 8, 86,
84, 96, 18, 24, 32, 45, 88, 11, 4, 67,
69, 66, 77, 47, 79, 93, 29, 50, 57, 83]
assert (test_1 == gt_1).all()
labels = [i for i in range(3)]
test_2 = translate_output_CIFAR_classes(labels, 21, 1)
gt_2 = [17, 81, 41]
assert (test_2 == gt_2).all()
test_3 = translate_output_CIFAR_classes(labels, 21, 20)
gt_3 = [26, 35, 39]
assert (test_3 == gt_3).all()
# 11 tasks
labels = [i for i in range(50)]
test_4 = translate_output_CIFAR_classes(labels, 11, 0)
gt_4 = [87, 0, 52, 58, 44, 91, 68, 97, 51, 15,
94, 92, 10, 72, 49, 78, 61, 14, 8, 86,
84, 96, 18, 24, 32, 45, 88, 11, 4, 67,
69, 66, 77, 47, 79, 93, 29, 50, 57, 83,
17, 81, 41, 12, 37, 59, 25, 20, 80, 73]
assert (test_4 == gt_4).all()
labels = [i for i in range(5)]
test_5 = translate_output_CIFAR_classes(labels, 11, 2)
gt_5 = [82, 53, 9, 31, 75]
assert (test_5 == gt_5).all()
# 6 tasks
labels = [i for i in range(50)]
test_6 = translate_output_CIFAR_classes(labels, 6, 0)
assert (test_6 == gt_4).all()
labels = [i for i in range(10)]
test_7 = translate_output_CIFAR_classes(labels, 6, 4)
gt_7 = [40, 30, 23, 85, 2, 95, 56, 48, 71, 64]
assert (test_7 == gt_7).all()
# 5 tasks
labels = [i for i in range(20)]
test_8 = translate_output_CIFAR_classes(labels, 5, 0)
gt_8 = [87, 0, 52, 58, 44, 91, 68, 97, 51, 15,
94, 92, 10, 72, 49, 78, 61, 14, 8, 86]
assert (test_8 == gt_8).all()
test_9 = translate_output_CIFAR_classes(labels, 5, 3)
gt_9 = [38, 63, 33, 74, 27, 22, 36, 3, 16, 21,
60, 19, 70, 90, 89, 43, 5, 42, 65, 76]
assert (test_9 == gt_9).all()
def translate_output_MNIST_classes(relative_labels, task, mode):
"""
Translate relative labels of form {0, 1} to the real labels
of Split MNIST dataset.
Arguments:
----------
*labels*: (Numpy array | list) contains labels of the form
*task*: (int) number of the currently calculated task,
starting from 0
*mode*: (str) "permuted" or "split", depending on the desired
dataset
"""
assert mode in ["permuted", "split"]
if mode == "permuted":
total_no_of_classes = 100
no_of_classes_per_task = 10
# Even if the classifier indicates '0' but from the wrong task
# it has to get a penalty. Therefore, in Permuted MNIST there
# are 100 unique classes.
elif mode == "split":
total_no_of_classes = 10
no_of_classes_per_task = 2
class_orders = [i for i in range(total_no_of_classes)]
currently_used_classes = class_orders[
(no_of_classes_per_task * task) : (no_of_classes_per_task * (task + 1))
]
y_translated = np.array(
[currently_used_classes[i] for i in relative_labels]
)
return y_translated
def unittest_translate_output_MNIST_classes():
"""
Unittest of translate_output_MNIST_classes() function.
"""
labels = [0, 0, 1, 0]
test_1 = translate_output_MNIST_classes(labels, 3, "split")
gt_1 = np.array([6, 6, 7, 6])
assert_array_equal(test_1, gt_1)
labels = [0, 1, 1, 0]
test_2 = translate_output_MNIST_classes(labels, 0, "split")
gt_2 = np.array([0, 1, 1, 0])
assert_array_equal(test_2, gt_2)
labels = [0, 5, 7, 0, 8, 9]
test_3 = translate_output_MNIST_classes(labels, 0, "permuted")
gt_3 = np.array([0, 5, 7, 0, 8, 9])
assert_array_equal(test_3, gt_3)
test_4 = translate_output_MNIST_classes(labels, 5, "permuted")
gt_4 = np.array([50, 55, 57, 50, 58, 59])
assert_array_equal(test_4, gt_4)
def get_target_network_representation(
hypernetwork,
hypernetwork_weights,
target_network,
target_weights,
target_network_type,
input_data,
sparsity,
no_of_batch_norm_layers,
task,
):
"""
Calculate the output classification layer of the target network,
having a hypernetwork with its weights, and a target network with
its weights, as well as the number of the considered task.
Currently, only ResNetF is handled.
Arguments:
----------
*hypernetwork*: an instance of HMLP class
*hypernetwork_weights*: loaded weights for the hypernetwork
*target_network*: an instance of MLP or ResNet class
*target_weights*: loaded weights for the target network
*target_network_type*: str representing the target network architecture
*input_data*: torch.Tensor with input data for the network
*sparsity*: int representing the percentage of weights for remove
*no_of_batch_norm_layers*: the number of batch normalization layers
in the target network
*task*: int representing the considered task; the corresponding
embedding and batch normalization statistics will be used
Returns:
--------
A list containing torch.Tensor (or tensors) representing values
from the output classification layer
"""
hypernetwork.eval()
target_network.eval()
with torch.no_grad():
hypernetwork_output = hypernetwork.forward(
cond_id=task, weights=hypernetwork_weights
)
masks = prepare_network_sparsity(hypernetwork_output, sparsity)
target_masked_weights = apply_mask_to_weights_of_network(
target_weights,
masks,
num_of_batch_norm_layers=no_of_batch_norm_layers,
)
if target_network_type in ["ResNetF", "MLP_FeCAM"]:
logits_masked, features = evaluate_target_network(
target_network,
input_data,
target_masked_weights,
target_network_type,
condition=task,
)
logits_masked = logits_masked.detach().cpu()
features = features.detach().cpu()
else:
logits_masked = evaluate_target_network(
target_network,
input_data,
target_masked_weights,
target_network_type,
condition=task,
)
logits_masked = logits_masked.detach().cpu()
if target_network_type in ["ResNetF", "MLP_FeCAM"]:
return [logits_masked, features]
else:
return [logits_masked]
def extract_training_set_from_all_tasks(
hypernetwork,
hypernetwork_weights,
target_network,
target_weights,
target_network_type,
dataset_CL_tasks,
dataset_name,
number_of_incremental_tasks,
total_number_of_tasks,
sparsity_parameter,
batch_train_set_size,
no_of_batch_norm_layers,
device,
tukeyed=False,
):
"""
To prepare covariance matrices and class prototypes it is necessary
to extract full training sets from consecutive tasks considered
in a given scenario.
This function extracts training data samples and corresponding labels
in terms of real number of classes, not the relative ones (being the
classification layer output), as well as the task IDs.
Arguments:
----------
*hypernetwork* (hypnettorch.hnets.mlp_hnet.HMLP) a hypernetwork object
*hypernetwork_weights* (torch.nn.modules.containter.ParameterList)
contains weights for *hypernetwork*
*target_network* a target network object; currently only ResNetF is
supported
*target_weights* (torch.nn.modules.container.ParameterList) contains
weights of the target network
*target_network_type* (str) defines name of the target architecture
*dataset_CL_tasks* (list of datasets) list of objects storing training
and test samples from consecutive tasks
*dataset_name*: (str) name of the dataset for proper class translation
*number_of_incremental_tasks* (int) the number of consecutive tasks
from which the training sets will be
extracted
*total_number_of_tasks* (int) the number of all tasks in a given
experiment
*sparsity_parameter* (int) defines a percentage of weights for removing
in consecutive layers
*batch_train_set_size* (int) defines size of single batch for
the inference of training data
*no_of_batch_norm_layers* (int) defines the number of batch
normalization layer in the target network
*device*: (str) 'cpu' or 'cuda', defines the equipment for computations
*tukeyed*: (Boolean value) optional, defines whether Tukey
transformation should be applied after forward propagation
through network, default: False
Returns:
--------
*X*: (Numpy array) contains all samples,
shapes: (number of samples, size of the features)
*y*: (Numpy array) contains labels for samples from *X*
shapes: (number of samples,)
*tasks_gt*: (Numpy array) contains task ID for samples from *X*
shapes: (number of samples,)
*dict_classes_per_task* (dictionary) defines labels for consecutive
tasks
"""
X, y, tasks_gt = [], [], []
dict_classes_per_task = {}
for task in range(number_of_incremental_tasks):
target_loaded_weights = deepcopy(target_weights)
currently_evaluated_task = dataset_CL_tasks[task]
#### Potentially FUNCTIOn 1a):
# Create a dictionary which labels are present in consecutive tasks
# Get real classes used in the current task
whole_output = currently_evaluated_task.output_to_torch_tensor(
currently_evaluated_task.get_train_outputs(),
device,
mode="inference",
)
whole_output = whole_output.max(dim=1)[1].cpu().detach().numpy()
if dataset_name == "CIFAR100_FeCAM_setup":
whole_output = translate_output_CIFAR_classes(
whole_output, total_number_of_tasks, task
)
elif dataset_name in ["PermutedMNIST", "SplitMNIST"]:
mode = "permuted" if dataset == "PermutedMNIST" else "split"
whole_output = translate_output_MNIST_classes(
whole_output, task, mode=mode
)
dict_classes_per_task[task] = list(np.unique(whole_output))
####
for (
batch_size,
samples,
labels,
) in currently_evaluated_task.train_iterator(batch_train_set_size):
train_input = currently_evaluated_task.input_to_torch_tensor(
samples, device, mode="inference"
)
train_output = currently_evaluated_task.output_to_torch_tensor(
labels, device, mode="inference"
)
gt_classes = train_output.max(dim=1)[1].cpu().detach().numpy()
# Translate relative outputs (labels) to the general labels
if dataset_name == "CIFAR100_FeCAM_setup":
gt_classes = translate_output_CIFAR_classes(
gt_classes, total_number_of_tasks, task
)
elif dataset in ["PermutedMNIST", "SplitMNIST"]:
gt_classes = translate_output_MNIST_classes(
gt_classes, task, mode=mode
)
y.append(gt_classes)
current_task_gt = np.zeros_like(gt_classes) + task
tasks_gt.append(current_task_gt)
# We know which class we are calculating during the training
# process, therefore we can select proper task
features = get_target_network_representation(
hypernetwork,
hypernetwork_weights,
target_network,
target_loaded_weights,
target_network_type,
train_input,
sparsity_parameter,
no_of_batch_norm_layers,
task,
)
features = features[0] if len(features) == 1 else features[1]
if tukeyed:
features = np.power(features, 2)
X.append(features)
X, y, tasks_gt = (
np.concatenate(X),
np.concatenate(y),
np.concatenate(tasks_gt),
)
return X, y, tasks_gt, dict_classes_per_task
def extract_test_set_from_single_task(
dataset_CL_tasks, no_of_task, dataset, device
):
"""
Extract test samples dedicated for a selected task
and change relative output classes into absolute classes.
Arguments:
----------
*dataset_CL_tasks*: list of objects containing consecutive tasks
*no_of_task*: (int) represents number of the currently analyzed task
*dataset*: (str) defines name of the dataset used: 'PermutedMNIST',
'SplitMNIST' or 'CIFAR100_FeCAM_setup'
*device*: (str) defines whether CPU or GPU will be used
Returns:
--------
*X_test*: (torch.Tensor) represents input samples
*gt_classes*: (Numpy array) represents absolute classes for *X_test*
*gt_tasks*: (list) represents number of task for corresponding samples
"""
tested_task = dataset_CL_tasks[no_of_task]
input_data = tested_task.get_test_inputs()
output_data = tested_task.get_test_outputs()
X_test = tested_task.input_to_torch_tensor(
input_data, device, mode="inference"
)
test_output = tested_task.output_to_torch_tensor(
output_data, device, mode="inference"
)
gt_classes = test_output.max(dim=1)[1]
if dataset == "CIFAR100_FeCAM_setup":
# Currently there is an assumption that only setup with
# 5 tasks will be used
gt_classes = translate_output_CIFAR_classes(
gt_classes, setup=5, task=no_of_task
)
elif dataset in ["PermutedMNIST", "SplitMNIST"]:
mode = "permuted" if dataset == "PermutedMNIST" else "split"
gt_classes = translate_output_MNIST_classes(
gt_classes, task=no_of_task, mode=mode
)
else:
raise ValueError("Wrong name of the dataset!")
gt_tasks = [no_of_task for _ in range(output_data.shape[0])]
return X_test, gt_classes, gt_tasks
def create_covariance_matrices_and_prototypes(
X,
y,
unique_objects,
no_shrinkage=2,
normalize_covariance=True,
tukeyed_samples=False,
tukeyed_prototypes=False,
):
"""
For each class create its covariance matrix and prototype.
Arguments:
----------
*X*: (Numpy array) contains all samples,
shapes: (number of samples, size of the features)
*y*: (Numpy array) contains labels for samples from *X*
shapes: (number of samples,)
*unique_objects*: (Numpy array or list) contains labels of all
classes/tasks occurring in this experiment
*no_shrinkage*: (int) defines how many times the shrinkage of covariance
matrix should be applied, default: 2
*normalize_covariance*: (Boolean value) optional, defines whether
a covariance matrix normalization should be
applied, default: True
*tukeyed_samples*: (Boolean value) optional, defines whether Tukey
transformation should be applied for samples
before covariance matrices creation, default: False
*tukeyed_prototypes*: (Boolean value) optional, defines whether Tukey
transformation should be applied for class
prototypes, default: False
Returns:
--------
*covariance_matrices* (dict) contains covariance matrices for
all classes
*prototypes* (dict) contains class prototypes
"""
X = deepcopy(X)
covariance_matrices, prototypes = {}, {}
# For the verification whether each index was selected exactly once
sanity_check_classes = np.zeros_like(y)
for class_no in unique_objects:
image_class_mask = y == class_no
selected_indices = np.nonzero(image_class_mask)
prototypes[class_no] = np.mean(X[selected_indices], axis=0)
if tukeyed_prototypes:
prototypes[class_no] = np.power(prototypes[class_no], 2)
sanity_check_classes[selected_indices] += 1
if tukeyed_samples:
X[selected_indices] = np.power(X[selected_indices], 2)
covariance = np.cov(X[selected_indices].T)
for i in range(no_shrinkage):
covariance = shrink_cov(covariance)
if normalize_covariance:
covariance = normalize_cov(covariance)
covariance_matrices[class_no] = covariance
desired_sanity_check = np.ones_like(y)
assert_array_almost_equal(sanity_check_classes, desired_sanity_check)
return covariance_matrices, prototypes
def extract_test_set_from_all_tasks(
dataset_CL_tasks, number_of_incremental_tasks, total_number_of_tasks, device
):
"""
Create a test set containing samples from all the considered tasks
with corresponding labels (without forward propagation through network)
and information about task.
Arguments:
----------
*dataset_CL_tasks* (list of datasets) list of objects storing training
and test samples from consecutive tasks
*number_of_incremental_tasks* (int) the number of consecutive tasks
from which the test sets will be
extracted
*total_number_of_tasks* (int) the number of all tasks in a given
experiment
*device*: (str) 'cpu' or 'cuda', defines the equipment for computations
Returns:
--------
*X_test* (torch Tensor) contains samples from the test set,
shape: (number of samples, number of image features [e.g. 3072
for CIFAR-100])
*y_test* (Numpy array) contains labels for corresponding samples
from *X_test* (number of samples, )
*tasks_test* (Numpy array) contains information about task for
corresponding samples from *X_test* (number of samples, )
"""
test_input_data, test_output_data, test_ID_tasks = [], [], []
for t in range(number_of_incremental_tasks):
tested_task = dataset_CL_tasks[t]
input_test_data = tested_task.get_test_inputs()
output_test_data = tested_task.get_test_outputs()
test_input = tested_task.input_to_torch_tensor(
input_test_data, device, mode="inference"
)
test_output = tested_task.output_to_torch_tensor(
output_test_data, device, mode="inference"
)
gt_classes = test_output.max(dim=1)[1].cpu().detach().numpy()
gt_classes = translate_output_CIFAR_classes(
gt_classes, total_number_of_tasks, t
)
test_input_data.append(test_input)
test_output_data.append(gt_classes)
current_task_gt = np.zeros_like(gt_classes) + t
test_ID_tasks.append(current_task_gt)
X_test = torch.cat(test_input_data)
y_test, tasks_test = np.concatenate(test_output_data), np.concatenate(
test_ID_tasks
)
assert X_test.shape[0] == y_test.shape[0] == tasks_test.shape[0]
return X_test, y_test, tasks_test
def calculate_mahalanobis_distances_between_all_samples_and_classes(
hypernetwork,
hypernetwork_weights,
target_network,
target_weights,
target_network_type,
X_sample,
covariance_matrices,
prototypes,
dict_classes_per_task,
sparsity_parameter,
no_of_batch_norm_layers,
number_of_incremental_tasks,
normalize=True,
tukeyed=False,
):
"""
Calculate output of the target network for each hypernetwork
embedding. For each embedding select the minimum distance across
various classes, in terms of the Mahalanobis distance.
Arguments:
----------
*hypernetwork* (hypnettorch.hnets.mlp_hnet.HMLP) a hypernetwork object
*hypernetwork_weights* (torch.nn.modules.containter.ParameterList)
contains weights for *hypernetwork*
*target_network* a target network object; currently only ResNetF is
supported
*target_weights* (torch.nn.modules.container.ParameterList) contains
weights of the target network
*target_network_type* (str) defines name of the target architecture
*X_sample* (torch Tensor) defines a batch of samples for inference
(shape: batch inference size, number of features [e.g.
3072 for CIFAR-100])
*covariance_matrices* (dict of Numpy arrays) contains covariance
matrices per each class
*prototypes* (dict of Numpy arrays) contains prototype per each class
*dict_classes_per_task* (dictionary) defines labels for consecutive
tasks
*sparsity_parameter* (int) defines a percentage of weights for removing
in consecutive layers
*no_of_batch_norm_layers* (int) defines the number of batch
normalization layer in the target network
*number_of_incremental_tasks* (int) the number of consecutive tasks
from which the test sets will be
extracted
*normalize*: (Boolean value) optional, defines whether the length
of each network output vector and class prototype
should be equal to one, default: True
*tukeyed*: (Boolean value) optional, defines whether Tukey
transformation should be applied after forward propagation
through network, default: False
Returns:
--------
*task_distances*: (Numpy array) defines nearest distances between
a given sample and a class which has the smallest
distance for a given task
*task_class_names*: (Numpy array) stores labels for corresponding
tasks and samples from *task_distances*
"""
task_distances, task_class_names = [], []
for t in range(number_of_incremental_tasks):
possible_classes = dict_classes_per_task[t]
prediction = get_target_network_representation(
hypernetwork,
hypernetwork_weights,
target_network,
target_weights,
target_network_type,
X_sample,
sparsity_parameter,
no_of_batch_norm_layers,
task=t,
)
prediction = prediction[0] if len(prediction) == 1 else prediction[1]
if tukeyed:
prediction = np.power(prediction, 2)
if normalize:
prediction = F.normalize(prediction, dim=-1).numpy()
# Calculate distances between each prototype and the target's
# representation
different_class_distances = []
for current_class in possible_classes:
if normalize:
difference = (
prediction
- F.normalize(
torch.from_numpy(prototypes[current_class]), dim=-1
).numpy()
)
else:
difference = prediction - prototypes[current_class]
distances = _mahalanobis(
difference, covariance_matrices[current_class]
)
different_class_distances.append(distances)
different_class_distances = np.array(different_class_distances)
distance_minimum_per_task = np.min(different_class_distances, axis=0)
label_minimum_per_task = np.argmin(different_class_distances, axis=0)
# Take the class corresponding to the minimum distance found
class_minimum_per_task = np.take(
possible_classes, label_minimum_per_task
)
task_distances.append(distance_minimum_per_task)
task_class_names.append(class_minimum_per_task)
task_distances = np.array(task_distances)
task_class_names = np.array(task_class_names)
assert task_distances.shape == task_class_names.shape
return task_distances, task_class_names
def select_nearest_classes_for_samples(task_distances, task_class_names):
"""
Select a class proper to given samples, according to the FeCAM approach
Arguments:
----------
*task_distances*: (Numpy array of floats) defines nearest distances
between a given sample and a class which has
the smallest distance for a given task
(shape: number of tasks, number of samples)
*task_class_names*: (Numpy array of integers) stores classes that
have the lowest distances between them and
consecutive samples; one class per each task
(shape: number of tasks, number of samples)
Returns:
--------
*nearest_classes_for_batch*: (Numpy array) contains labels of classes
that have the lowest distance between
the class prototype and given samples
(shape: number of samples,)
"""
indices_of_min_task_distances = np.argmin(task_distances, axis=0)
indices_of_nearest_classes = np.vstack(
[indices_of_min_task_distances, np.arange(task_distances.shape[1])]
)
nearest_classes_for_batch = task_class_names[
indices_of_nearest_classes[0], indices_of_nearest_classes[1]
]
return nearest_classes_for_batch
def unittest_select_nearest_classes_for_samples():
"""
Unittest of select_nearest_classes_for_samples() function.
"""
# 4 tasks, 3 samples
task_distances_1 = np.array(
[
[0.12, 0.25, 0.001],
[0.09, 0.01, 0.8],
[0.07, 0.9, 0.002],
[0.04, 1.1, 0.5],
]
)
task_class_names_1 = np.array(
[[11, 12, 68], [24, 23, 34], [35, 58, 40], [47, 71, 51]]
)
gt_1 = np.array([47, 23, 68])
result_1 = select_nearest_classes_for_samples(
task_distances_1, task_class_names_1
)
assert_array_equal(gt_1, result_1)
def main_hypermask_with_fecam(
experiment_models,
no_of_covariance_shrinkage=2,
normalize_covariance=True,
normalize_features=True,
apply_tukey=False,
):
"""
Arguments:
----------
*experiment_models*: A dictionary with the following keys:
*hypernetwork*: an instance of HMLP class
*hypernetwork_weights*: loaded weights for the hypernetwork
*target_network*: an instance of MLP or ResNet class
*target_network_weights*: loaded weights for the target network
*list_of_CL_tasks*: list of objects containing consecutive tasks
*no_of_batch_norm_layers*: the number of batch normalization layers
in the target network
*hyperparameters*: a dictionary with experiment's hyperparameters
*batch_train_set_size*: int related to the batch size during
the extraction of training points
*batch_inference_size*: int related to the batch size during inference
*setup*: int related to the total number of tasks in a given experiment
*mode*: 'str': 'class' or 'task' defines whether FeCAM should be used
for sample class selection using the representation from
HyperMask or whether FeCAM should be used just for task
selection and HyperMask as the final predictor on the embedding
selected by FeCAM
*accuracy_report_method*: 'str': 'HNET' or 'FeCAM'. In the first case,
only the model after all tasks is considered as well as samples
from consecutive tasks separately. For 'FeCAM' models after
consecutive tasks are evaluated. Also, during the evaluation
of i-th task, test sets from the previous tasks
{0, 1, ..., i-1} are also included.
*no_of_covariance_shrinkage*: (int) defines how many times covariance
shrinking should be performed,
optional: default 2
*normalize_covariance*: (Boolean value) defines whether normalization
of covariance matrices should be performed,
optional: default True
*normalize_features*: (Boolean value) defines whether normalization
of features extracted by the network as well as
prototype normalization should be performed
otpional: default True
*apply_tukey*: (Boolean value) defines whether Tukey transformation
will be performed, optional: default False
Returns:
--------
*summary_of_results*: (list) contains the following elements:
- consecutive class prediction accuracies,
- consecutive task prediction accuracies (in 'task' mode),
- mean class prediction accuracy (with std. dev.)
- mean task prediction accuracy (with std. dev.), only in 'task'
mode.
"""
hypernetwork = experiment_models["hypernetwork"]
hypernetwork_weights = experiment_models["hypernetwork_weights"]
target_network = experiment_models["target_network"]
target_weights = experiment_models["target_network_weights"]
hyperparameters = experiment_models["hyperparameters"]
dataset_CL_tasks = experiment_models["list_of_CL_tasks"]
no_of_batch_norm_layers = experiment_models["no_of_batch_norm_layers"]
target_network_type = hyperparameters["target_network"]
batch_train_set_size = experiment_models["batch_train_set_size"]
batch_inference_size = experiment_models["batch_inference_size"]
dataset_name = experiment_models["hyperparameters"]["dataset"]
setup = experiment_models["setup"]
mode = experiment_models["mode"]
if dataset_name == "CIFAR100_FeCAM_setup":
accuracy_report_method = "FeCAM"
elif dataset_name in ["PermutedMNIST", "SplitMNIST"]:
accuracy_report_method = "HNET"
else:
raise ValueError("This dataset is currently not implemented!")
hypernetwork.eval()
target_network.eval()
if target_network_type == "ResNet":
target_network_type == "ResNetF"
class_predictions = []
if mode == "task":
task_predictions = []
if accuracy_report_method == "FeCAM":
considered_tasks = range(1, setup + 1)
elif accuracy_report_method == "HNET":
considered_tasks = [setup]
for number_of_incremental_tasks in considered_tasks:
# --FeCAM evaluation method--
# Iteration over tasks - incremental learning scenario:
# During the evaluation of the i-th task, tasks {0, 1, 2, ..., i}
# are evaluated.
# --HNET evaluation method--
# Only last model is considered. During the evaluation of the i-th
# task only its test set is evaluated.
# Prepare training set containing samples and corresponding labels
(
X,
y,
tasks_gt,
dict_classes_per_task,
) = extract_training_set_from_all_tasks(
hypernetwork,
hypernetwork_weights,
target_network,
target_weights,
target_network_type,
dataset_CL_tasks,
dataset_name,
number_of_incremental_tasks,
setup,
hyperparameters["sparsity_parameters"][0],
batch_train_set_size,
no_of_batch_norm_layers,
hyperparameters["device"],
tukeyed=apply_tukey,
)
unique_objects = np.concatenate(list(dict_classes_per_task.values()))
# For each class occurring in the training set calculate a covariance
# matrix and a class prototype
(
covariance_matrices,
prototypes,
) = create_covariance_matrices_and_prototypes(
X,
y,
unique_objects,
no_shrinkage=no_of_covariance_shrinkage,
normalize_covariance=normalize_covariance,
tukeyed_samples=apply_tukey,
tukeyed_prototypes=apply_tukey,
)
# Load the test set
X_tests, y_tests, gt_tasks_tests = [], [], []
if accuracy_report_method == "FeCAM":
X_test, y_test, gt_tasks_test = extract_test_set_from_all_tasks(
dataset_CL_tasks,
number_of_incremental_tasks,
setup,
hyperparameters["device"],
)
X_tests.append(X_test)
y_tests.append(y_test)
gt_tasks_tests.append(gt_tasks_test)
elif accuracy_report_method == "HNET":
for current_no_of_task in range(number_of_incremental_tasks):
(
X_test,
y_test,
gt_tasks_test,
) = extract_test_set_from_single_task(
dataset_CL_tasks,
current_no_of_task,
dataset_name,
hyperparameters["device"],
)
X_tests.append(X_test)
y_tests.append(y_test)
gt_tasks_tests.append(gt_tasks_test)
for no, (X_test, y_test, gt_tasks_test) in enumerate(
zip(X_tests, y_tests, gt_tasks_tests)
):
no_of_batches = X_test.shape[0] // batch_inference_size
if X_test.shape[0] % batch_inference_size > 0.0:
no_of_batches += 1
results_nearest_classes = []
if mode == "task":
results_nearest_tasks = []
for i in range(no_of_batches):
X_sample = X_test[
(batch_inference_size * i) : (
batch_inference_size * (i + 1)
)
]
# Calculate outputs of the classification layer using all embeddings
(
task_distances,
task_class_names,
) = calculate_mahalanobis_distances_between_all_samples_and_classes(
hypernetwork,
hypernetwork_weights,
target_network,
target_weights,
target_network_type,
X_sample,
covariance_matrices,
prototypes,
dict_classes_per_task,
hyperparameters["sparsity_parameters"][0],
no_of_batch_norm_layers,
number_of_incremental_tasks,
normalize=normalize_features,
tukeyed=apply_tukey,
)
# Finally, directly select the class with the lowest
# distance to the target's output (minimum of the minima) [mode: class]
# OR get predictions from HyperMask [mode: task].
if mode == "class":
current_nearest_objects = (
select_nearest_classes_for_samples(
task_distances, task_class_names
)
)
elif mode == "task":
selected_tasks = np.argmin(task_distances, axis=0)
results_nearest_tasks.append(selected_tasks)
current_nearest_objects = (
evaluate_hypermask_with_selected_embedding(
hypernetwork,
hypernetwork_weights,
target_network,
target_weights,
target_network_type,
dataset_name,
X_sample,
selected_tasks,
hyperparameters["sparsity_parameters"][0],
no_of_batch_norm_layers,
number_of_incremental_tasks,
setup,
)