-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathload_generalized.py
93 lines (74 loc) · 2.78 KB
/
load_generalized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import torch
import numpy as np
import imageio
import json
import torch.nn.functional as F
import cv2
import glob
from os.path import join
from tqdm import tqdm
from multiplane_helpers_generalized import ImagePlane
trans_t = lambda t : torch.Tensor([
[1,0,0,0],
[0,1,0,0],
[0,0,1,t],
[0,0,0,1]]).float()
rot_phi = lambda phi : torch.Tensor([
[1,0,0,0],
[0,np.cos(phi),-np.sin(phi),0],
[0,np.sin(phi), np.cos(phi),0],
[0,0,0,1]]).float()
rot_theta = lambda th : torch.Tensor([
[np.cos(th),0,-np.sin(th),0],
[0,1,0,0],
[np.sin(th),0, np.cos(th),0],
[0,0,0,1]]).float()
def pose_spherical(theta, phi, radius):
c2w = trans_t(radius)
c2w = rot_phi(phi/180.*np.pi) @ c2w
c2w = rot_theta(theta/180.*np.pi) @ c2w
c2w = torch.Tensor(np.array([[-1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]])) @ c2w
return c2w
def get_train_ids():
for i in range(0, 45):
yield i
def get_test_ids():
for i in range(45, 50):
yield i
def load_many_data(basedir):
splits = ['train', 'val', 'test']
focal = torch.Tensor([277.77]).to('cuda')
objects = {}
test_objects = {}
for fi, file in tqdm(enumerate(glob.glob(join(basedir, '*.npz')))):
object = {}
loaded = np.load(file)
p = np.array(loaded['cam_poses']).astype(np.float32)
imgs = (np.array(loaded['images'])).astype(np.float32)
image_plane = ImagePlane(focal, p[list(get_train_ids())], imgs[list(get_train_ids())], 50)
object['images'] = imgs[list(get_train_ids())]
object['poses'] = p[list(get_train_ids())]
object['images_test'] = imgs[list(get_test_ids())]
object['poses_test'] = p[list(get_test_ids())]
object['image_plane'] = image_plane
if fi == 20:
break
if fi >= 10:
objects[file] = object
else:
test_objects[file] = object
# for file in glob.glob(join(basedir, 'test', '*.npz')):
# object = {}
# loaded = np.load(file)
# p = np.array(loaded['cam_poses']).astype(np.float32)
# imgs = (np.array(loaded['images'])).astype(np.float32)
# image_plane = ImagePlane(focal, p[list(get_train_ids())], imgs[list(get_train_ids())], 100)
# object['images'] = imgs[list(get_train_ids())]
# object['poses'] = p[list(get_train_ids())]
# object['images_test'] = imgs[list(get_test_ids())]
# object['poses_test'] = p[list(get_test_ids())]
# object['image_plane'] = image_plane
# test_objects[file] = object
render_poses = torch.stack([pose_spherical(angle, -30.0, 3.8) for angle in np.linspace(-180,180,40+1)[:-1]], 0)
return objects, test_objects, render_poses, [200, 200, focal]