-
Notifications
You must be signed in to change notification settings - Fork 18k
/
Copy pathdevirtualize.go
579 lines (522 loc) · 17.3 KB
/
devirtualize.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package devirtualize implements two "devirtualization" optimization passes:
//
// - "Static" devirtualization which replaces interface method calls with
// direct concrete-type method calls where possible.
// - "Profile-guided" devirtualization which replaces indirect calls with a
// conditional direct call to the hottest concrete callee from a profile, as
// well as a fallback using the original indirect call.
package devirtualize
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
)
const go125ImprovedConcreteTypeAnalysis = true
// StaticCall devirtualizes the given call if possible when the concrete callee
// is available statically.
func StaticCall(s *State, call *ir.CallExpr) {
// For promoted methods (including value-receiver methods promoted
// to pointer-receivers), the interface method wrapper may contain
// expressions that can panic (e.g., ODEREF, ODOTPTR,
// ODOTINTER). Devirtualization involves inlining these expressions
// (and possible panics) to the call site. This normally isn't a
// problem, but for go/defer statements it can move the panic from
// when/where the call executes to the go/defer statement itself,
// which is a visible change in semantics (e.g., #52072). To prevent
// this, we skip devirtualizing calls within go/defer statements
// altogether.
if call.GoDefer {
return
}
if call.Op() != ir.OCALLINTER {
return
}
sel := call.Fun.(*ir.SelectorExpr)
var typ *types.Type
if go125ImprovedConcreteTypeAnalysis {
typ = concreteType(s, sel.X)
if typ == nil {
return
}
// Don't try to devirtualize calls that we statically know that would have failed at runtime.
// This can happen in such case: any(0).(interface {A()}).A(), this typechecks without
// any errors, but will cause a runtime panic. We statically know that int(0) does not
// implement that interface, thus we skip the devirtualization, as it is not possible
// to make an assertion: any(0).(interface{A()}).(int) (int does not implement interface{A()}).
if !typecheck.Implements(typ, sel.X.Type()) {
return
}
} else {
r := ir.StaticValue(sel.X)
if r.Op() != ir.OCONVIFACE {
return
}
recv := r.(*ir.ConvExpr)
typ = recv.X.Type()
if typ.IsInterface() {
return
}
}
// If typ is a shape type, then it was a type argument originally
// and we'd need an indirect call through the dictionary anyway.
// We're unable to devirtualize this call.
if typ.IsShape() {
return
}
// If typ *has* a shape type, then it's a shaped, instantiated
// type like T[go.shape.int], and its methods (may) have an extra
// dictionary parameter. We could devirtualize this call if we
// could derive an appropriate dictionary argument.
//
// TODO(mdempsky): If typ has a promoted non-generic method,
// then that method won't require a dictionary argument. We could
// still devirtualize those calls.
//
// TODO(mdempsky): We have the *runtime.itab in recv.TypeWord. It
// should be possible to compute the represented type's runtime
// dictionary from this (e.g., by adding a pointer from T[int]'s
// *runtime._type to .dict.T[int]; or by recognizing static
// references to go:itab.T[int],iface and constructing a direct
// reference to .dict.T[int]).
if typ.HasShape() {
if base.Flag.LowerM != 0 {
base.WarnfAt(call.Pos(), "cannot devirtualize %v: shaped receiver %v", call, typ)
}
return
}
// Further, if sel.X's type has a shape type, then it's a shaped
// interface type. In this case, the (non-dynamic) TypeAssertExpr
// we construct below would attempt to create an itab
// corresponding to this shaped interface type; but the actual
// itab pointer in the interface value will correspond to the
// original (non-shaped) interface type instead. These are
// functionally equivalent, but they have distinct pointer
// identities, which leads to the type assertion failing.
//
// TODO(mdempsky): We know the type assertion here is safe, so we
// could instead set a flag so that walk skips the itab check. For
// now, punting is easy and safe.
if sel.X.Type().HasShape() {
if base.Flag.LowerM != 0 {
base.WarnfAt(call.Pos(), "cannot devirtualize %v: shaped interface %v", call, sel.X.Type())
}
return
}
dt := ir.NewTypeAssertExpr(sel.Pos(), sel.X, typ)
if go125ImprovedConcreteTypeAnalysis {
// Consider:
//
// var v Iface
// v.A()
// v = &Impl{}
//
// Here in the devirtualizer, we determine the concrete type of v as being an *Impl,
// but it can still be a nil interface, we have not detected that. The v.(*Impl)
// type assertion that we make here would also have failed, but with a different
// panic "pkg.Iface is nil, not *pkg.Impl", where previously we would get a nil panic.
// We fix this, by introducing an additional nilcheck on the itab.
// Calling a method on an nil interface (in most cases) is a bug in a program, so it is fine
// to devirtualize and further (possibly) inline them, even though we would never reach
// the called function.
dt.UseNilPanic = true
dt.SetPos(call.Pos())
}
x := typecheck.XDotMethod(sel.Pos(), dt, sel.Sel, true)
switch x.Op() {
case ir.ODOTMETH:
if base.Flag.LowerM != 0 {
base.WarnfAt(call.Pos(), "devirtualizing %v to %v", sel, typ)
}
call.SetOp(ir.OCALLMETH)
call.Fun = x
case ir.ODOTINTER:
// Promoted method from embedded interface-typed field (#42279).
if base.Flag.LowerM != 0 {
base.WarnfAt(call.Pos(), "partially devirtualizing %v to %v", sel, typ)
}
call.SetOp(ir.OCALLINTER)
call.Fun = x
default:
base.FatalfAt(call.Pos(), "failed to devirtualize %v (%v)", x, x.Op())
}
// Duplicated logic from typecheck for function call return
// value types.
//
// Receiver parameter size may have changed; need to update
// call.Type to get correct stack offsets for result
// parameters.
types.CheckSize(x.Type())
switch ft := x.Type(); ft.NumResults() {
case 0:
case 1:
call.SetType(ft.Result(0).Type)
default:
call.SetType(ft.ResultsTuple())
}
// Desugar OCALLMETH, if we created one (#57309).
typecheck.FixMethodCall(call)
}
const concreteTypeDebug = false
// concreteType determines the concrete type of n, following OCONVIFACEs and type asserts.
// Returns nil when the concrete type could not be determined, or when there are multiple
// (different) types assigned to an interface.
func concreteType(s *State, n ir.Node) (typ *types.Type) {
typ = concreteType1(s, n, make(map[*ir.Name]struct{}))
if typ != nil && typ.IsInterface() {
base.Fatalf("typ.IsInterface() = true; want = false; typ = %v", typ)
}
if typ == &noType {
return nil
}
return typ
}
// noType is a sentinel value returned by [concreteType1].
var noType types.Type
// concreteType1 analyzes the node n and returns its concrete type if it is statically known.
// Otherwise, it returns a nil Type, indicating that a concrete type was not determined.
// When n is known to be statically nil or a self-assignment is detected, in returns a sentinel [noType] type instead.
func concreteType1(s *State, n ir.Node, seen map[*ir.Name]struct{}) (outT *types.Type) {
nn := n // for debug messages
if concreteTypeDebug {
defer func() {
t := "&noType"
if outT != &noType {
t = outT.String()
}
base.Warn("concreteType1(%v) -> %v", nn, t)
}()
}
for {
if concreteTypeDebug {
base.Warn("concreteType1(%v): analyzing %v", nn, n)
}
if !n.Type().IsInterface() {
return n.Type()
}
switch n1 := n.(type) {
case *ir.ConvExpr:
if n1.Op() == ir.OCONVNOP {
if !n1.Type().IsInterface() || !types.Identical(n1.Type(), n1.X.Type()) {
// As we check (directly before this switch) whether n is an interface, thus we should only reach
// here for iface conversions where both operands are the same.
base.Fatalf("not identical/interface types found n1.Type = %v; n1.X.Type = %v", n1.Type(), n1.X.Type())
}
n = n1.X
continue
}
if n1.Op() == ir.OCONVIFACE {
n = n1.X
continue
}
case *ir.InlinedCallExpr:
if n1.Op() == ir.OINLCALL {
n = n1.SingleResult()
continue
}
case *ir.ParenExpr:
n = n1.X
continue
case *ir.TypeAssertExpr:
n = n1.X
continue
}
break
}
if n.Op() != ir.ONAME {
return nil
}
name := n.(*ir.Name).Canonical()
if name.Class != ir.PAUTO {
return nil
}
if name.Op() != ir.ONAME {
base.Fatalf("reassigned %v", name)
}
// name.Curfn must be set, as we checked name.Class != ir.PAUTO before.
if name.Curfn == nil {
base.Fatalf("name.Curfn = nil; want not nil")
}
if name.Addrtaken() {
return nil // conservatively assume it's reassigned with a different type indirectly
}
if _, ok := seen[name]; ok {
// Self assignment, treat it the same as a nil assignment.
// In case this is the only assignment then we are not going to devirtualize anything.
// In case there are other assignment, we still preserve the correct type.
return &noType
}
seen[name] = struct{}{}
if concreteTypeDebug {
base.Warn("concreteType1(%v): analyzing assignments to %v", nn, name)
}
var typ *types.Type
for _, v := range s.assignments(name) {
var t *types.Type
switch v := v.(type) {
case *types.Type:
t = v
case ir.Node:
t = concreteType1(s, v, seen)
if t == &noType {
continue
}
}
if t == nil || (typ != nil && !types.Identical(typ, t)) {
return nil
}
typ = t
}
delete(seen, name)
if typ == nil {
// Variable either declared with zero value, or only assigned with nil.
return &noType
}
return typ
}
// assignment can be one of:
// - nil - assignment to an interface type.
// - *types.Type - assignment to a concrete type (non-interface).
// - ir.Node - assignment to a ir.Node.
//
// In most cases assignment should be an [ir.Node], but in cases where we
// do not follow the data-flow, we return either a concrete type (*types.Type) or a nil.
// For example in range over a slice, if the slice elem is of an interface type, then we return
// a nil, otherwise the elem's concrete type (We do so because we do not analyze assignment to the
// slice being ranged-over).
type assignment any
// State holds precomputed state for use in [StaticCall].
type State struct {
// ifaceAssignments maps interface variables to all their assignments
// defined inside functions stored in the analyzedFuncs set.
// Note: it does not include direct assignments to nil.
ifaceAssignments map[*ir.Name][]assignment
// ifaceCallExprAssigns stores every [*ir.CallExpr], which has an interface
// result, that is assigned to a variable.
ifaceCallExprAssigns map[*ir.CallExpr][]ifaceAssignRef
// analyzedFuncs is a set of Funcs that were analyzed for iface assignments.
analyzedFuncs map[*ir.Func]struct{}
}
type ifaceAssignRef struct {
name *ir.Name // ifaceAssignments[name]
valOrTypeIndex int // ifaceAssignments[name][valOrTypeIndex]
returnIndex int // (*ir.CallExpr).Result(returnIndex)
}
// InlinedCall updates the [State] to take into account a newly inlined call.
func (s *State) InlinedCall(fun *ir.Func, origCall *ir.CallExpr, inlinedCall *ir.InlinedCallExpr) {
if _, ok := s.analyzedFuncs[fun]; !ok {
// Full analyze has not been yet executed for the provided function, so we can skip it for now.
// When no devirtualization happens in a function, it is unnecessary to analyze it.
return
}
// Analyze assignments in the newly inlined function.
s.analyze(inlinedCall.Init())
s.analyze(inlinedCall.Body)
refs, ok := s.ifaceCallExprAssigns[origCall]
if !ok {
return
}
delete(s.ifaceCallExprAssigns, origCall)
// Update assignments to reference the new ReturnVars of the inlined call.
for _, ref := range refs {
vt := &s.ifaceAssignments[ref.name][ref.valOrTypeIndex]
if *vt != nil {
base.Fatalf("unexpected non-nil assignment")
}
if concreteTypeDebug {
base.Warn(
"InlinedCall(%v, %v): replacing interface node in (%v,%v) to %v (typ %v)",
origCall, inlinedCall, ref.name, ref.valOrTypeIndex,
inlinedCall.ReturnVars[ref.returnIndex],
inlinedCall.ReturnVars[ref.returnIndex].Type(),
)
}
*vt = inlinedCall.ReturnVars[ref.returnIndex]
}
}
// assignments returns all assignments to n.
func (s *State) assignments(n *ir.Name) []assignment {
fun := n.Curfn
if fun == nil {
base.Fatalf("n.Curfn = <nil>")
}
if !n.Type().IsInterface() {
base.Fatalf("name passed to assignments is not of an interface type: %v", n.Type())
}
// Analyze assignments in func, if not analyzed before.
if _, ok := s.analyzedFuncs[fun]; !ok {
if concreteTypeDebug {
base.Warn("concreteType(): analyzing assignments in %v func", fun)
}
if s.analyzedFuncs == nil {
s.ifaceAssignments = make(map[*ir.Name][]assignment)
s.ifaceCallExprAssigns = make(map[*ir.CallExpr][]ifaceAssignRef)
s.analyzedFuncs = make(map[*ir.Func]struct{})
}
s.analyzedFuncs[fun] = struct{}{}
s.analyze(fun.Init())
s.analyze(fun.Body)
}
return s.ifaceAssignments[n]
}
// analyze analyzes every assignment to interface variables in nodes, updating [State].
func (s *State) analyze(nodes ir.Nodes) {
assign := func(name ir.Node, assignment assignment) (*ir.Name, int) {
if name == nil || name.Op() != ir.ONAME || ir.IsBlank(name) {
return nil, -1
}
n, ok := ir.OuterValue(name).(*ir.Name)
if !ok || n.Curfn == nil {
return nil, -1
}
// Do not track variables that are not of interface types.
// For devirtualization they are unnecessary, we will not even look them up.
if !n.Type().IsInterface() {
return nil, -1
}
n = n.Canonical()
if n.Op() != ir.ONAME {
base.Fatalf("reassigned %v", n)
}
switch a := assignment.(type) {
case nil:
case *types.Type:
if a != nil && a.IsInterface() {
assignment = nil // non-concrete type
}
case ir.Node:
// nil assignment, we can safely ignore them, see [StaticCall].
if ir.IsNil(a) {
return nil, -1
}
default:
base.Fatalf("unexpected type: %v", assignment)
}
if concreteTypeDebug {
base.Warn("analyze(): assignment found %v = %v", name, assignment)
}
s.ifaceAssignments[n] = append(s.ifaceAssignments[n], assignment)
return n, len(s.ifaceAssignments[n]) - 1
}
var do func(n ir.Node)
do = func(n ir.Node) {
switch n.Op() {
case ir.OAS:
n := n.(*ir.AssignStmt)
if n.Y != nil {
rhs := n.Y
for {
if r, ok := rhs.(*ir.ParenExpr); ok {
rhs = r.X
continue
}
break
}
if call, ok := rhs.(*ir.CallExpr); ok && call.Fun != nil {
retTyp := call.Fun.Type().Results()[0].Type
n, idx := assign(n.X, retTyp)
if n != nil && retTyp.IsInterface() {
s.ifaceCallExprAssigns[call] = append(s.ifaceCallExprAssigns[call], ifaceAssignRef{n, idx, 0})
}
} else {
assign(n.X, rhs)
}
}
case ir.OAS2:
n := n.(*ir.AssignListStmt)
for i, p := range n.Lhs {
if n.Rhs[i] != nil {
assign(p, n.Rhs[i])
}
}
case ir.OAS2DOTTYPE:
n := n.(*ir.AssignListStmt)
if n.Rhs[0] == nil {
base.Fatalf("n.Rhs[0] == nil; n = %v", n)
}
assign(n.Lhs[0], n.Rhs[0])
assign(n.Lhs[1], nil) // boolean does not have methods to devirtualize
case ir.OAS2MAPR, ir.OAS2RECV, ir.OSELRECV2:
n := n.(*ir.AssignListStmt)
if n.Rhs[0] == nil {
base.Fatalf("n.Rhs[0] == nil; n = %v", n)
}
assign(n.Lhs[0], n.Rhs[0].Type())
assign(n.Lhs[1], nil) // boolean does not have methods to devirtualize
case ir.OAS2FUNC:
n := n.(*ir.AssignListStmt)
rhs := n.Rhs[0]
for {
if r, ok := rhs.(*ir.ParenExpr); ok {
rhs = r.X
continue
}
break
}
if call, ok := rhs.(*ir.CallExpr); ok {
for i, p := range n.Lhs {
retTyp := call.Fun.Type().Results()[i].Type
n, idx := assign(p, retTyp)
if n != nil && retTyp.IsInterface() {
s.ifaceCallExprAssigns[call] = append(s.ifaceCallExprAssigns[call], ifaceAssignRef{n, idx, i})
}
}
} else if call, ok := rhs.(*ir.InlinedCallExpr); ok {
for i, p := range n.Lhs {
assign(p, call.ReturnVars[i])
}
} else {
// TODO: can we reach here?
for _, p := range n.Lhs {
assign(p, nil)
}
}
case ir.ORANGE:
n := n.(*ir.RangeStmt)
xTyp := n.X.Type()
// Range over an array pointer.
if xTyp.IsPtr() && xTyp.Elem().IsArray() {
xTyp = xTyp.Elem()
}
if xTyp.IsArray() || xTyp.IsSlice() {
assign(n.Key, nil) // inteager does not have methods to devirtualize
assign(n.Value, xTyp.Elem())
} else if xTyp.IsChan() {
assign(n.Key, xTyp.Elem())
base.Assertf(n.Value == nil, "n.Value != nil in range over chan")
} else if xTyp.IsMap() {
assign(n.Key, xTyp.Key())
assign(n.Value, xTyp.Elem())
} else if xTyp.IsInteger() || xTyp.IsString() {
// Range over int/string, results do not have methods, so nothing to devirtualize.
assign(n.Key, nil)
assign(n.Value, nil)
} else {
// We will not reach here in case of an range-over-func, as it is
// rewrtten to function calls in the noder package.
base.Fatalf("range over unexpected type %v", n.X.Type())
}
case ir.OSWITCH:
n := n.(*ir.SwitchStmt)
if guard, ok := n.Tag.(*ir.TypeSwitchGuard); ok {
for _, v := range n.Cases {
if v.Var == nil {
base.Assert(guard.Tag == nil)
continue
}
assign(v.Var, guard.X)
}
}
case ir.OCLOSURE:
n := n.(*ir.ClosureExpr)
if _, ok := s.analyzedFuncs[n.Func]; !ok {
s.analyzedFuncs[n.Func] = struct{}{}
ir.Visit(n.Func, do)
}
}
}
ir.VisitList(nodes, do)
}