-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComma10kDataset.cpp
executable file
·163 lines (140 loc) · 6.59 KB
/
Comma10kDataset.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/**
* MIT License
* Copyright (c) 2018 Patrick Geneva
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Comma10kDataset.h"
Comma10kDataset::Comma10kDataset(std::string pathroot, ModeDataSplit mode, bool randomize) {
// Set if we should randomize
this->randomize = randomize;
// Open the file
std::string path = pathroot + "files_trainable";
std::ifstream file;
file.open(path);
if (!file) {
std::cerr << "ERROR: Unable to open trainable file listing" << std::endl;
std::cerr << path << std::endl;
std::exit(EXIT_FAILURE);
}
// Loop through and generate our file listings
// We are validating on images ending with "9.png"
std::string line_mask;
while (std::getline(file, line_mask)) {
std::string line_rgb = std::regex_replace(line_mask, std::regex("masks"), "imgs");
line_rgb = std::regex_replace(line_rgb, std::regex("masks2"), "imgs2");
if (mode == Comma10kDataset::ModeDataSplit::kTest && ends_with(line_mask, "9.png")) {
paths_rgb.push_back(pathroot + line_rgb);
paths_labels_seg.push_back(pathroot + line_mask);
} else if (mode == Comma10kDataset::ModeDataSplit::kTrain && !ends_with(line_mask, "9.png")) {
paths_rgb.push_back(pathroot + line_rgb);
paths_labels_seg.push_back(pathroot + line_mask);
}
}
file.close();
// Sort them so they match
std::sort(paths_rgb.begin(), paths_rgb.end());
std::sort(paths_labels_seg.begin(), paths_labels_seg.end());
// Random order (ensure same random shuffle on both)
// https://stackoverflow.com/a/16968342
if (mode == Comma10kDataset::ModeDataSplit::kTrain && randomize) {
unsigned int seed = std::time(NULL);
std::srand(seed);
std::random_shuffle(paths_rgb.begin(), paths_rgb.end());
std::srand(seed);
std::random_shuffle(paths_labels_seg.begin(), paths_labels_seg.end());
std::srand(std::time(NULL));
}
// Check that they are of the same size
if (paths_rgb.size() != paths_labels_seg.size()) {
std::cerr << "number of RGB images does not equal CLASS label images" << std::endl;
std::cerr << "rgb image count = " << paths_rgb.size() << std::endl;
std::cerr << "label image count = " << paths_labels_seg.size() << std::endl;
std::exit(EXIT_FAILURE);
}
// Debug
std::cout << "done loading dataset..." << std::endl;
std::cout << " - rgb image count = " << paths_rgb.size() << std::endl;
std::cout << " - label image count = " << paths_labels_seg.size() << std::endl;
}
torch::data::Example<> Comma10kDataset::get(size_t index) {
// Assert that our index is in bound
assert(index < paths_rgb.size());
// Get the images
std::string path_rgb = paths_rgb.at(index);
std::string path_label = paths_labels_seg.at(index);
// Load with the image from disk
cv::Mat cv_rgb = cv::imread(path_rgb, cv::IMREAD_COLOR);
cv::Mat cv_label_rgb = cv::imread(path_label, cv::IMREAD_COLOR);
std::vector<cv::Mat> cv_label_channels;
cv::split(cv_label_rgb, cv_label_channels);
cv::Mat cv_label = cv_label_channels[0];
// Assert that we have images
assert(cv_rgb.rows != 0 && cv_rgb.cols != 0);
assert(cv_label.rows != 0 && cv_label.cols != 0);
assert(cv_rgb.rows == cv_label.rows && cv_rgb.cols == cv_label.cols);
// Randomly apply transformations to our image
if (randomize) {
random_rotate(cv_rgb, cv_label);
random_camera_model(cv_rgb, cv_label);
random_crop(cv_rgb, cv_label);
random_disturbances(cv_rgb);
}
// Resize the images
cv::resize(cv_rgb, cv_rgb, cv::Size(640 / 2, 480 / 2), 0, 0, cv::INTER_CUBIC);
cv::resize(cv_label, cv_label, cv::Size(640 / 2, 480 / 2), 0, 0, cv::INTER_NEAREST);
// Our new label matrix that have all cityscape classes coverted
// This will convert from the -1 to 32 classes to our 0-3 range
cv::Mat cv_labelids = cv::Mat(cv_label.rows, cv_label.cols, CV_8UC1, cv::Scalar(0));
for (int r = 0; r < cv_label.rows; r++) {
for (int c = 0; c < cv_label.cols; c++) {
if (map_class2id.find(cv_label.at<char>(r, c)) != map_class2id.end()) {
cv_labelids.at<char>(r, c) = map_class2id.at(cv_label.at<char>(r, c));
}
}
}
// Debug image
// cv::imshow("test 1", cv_label);
// cv::imshow("test 2", (255 / map_id2class.size()) * cv_labelids);
// cv::waitKey(0);
// Convert to pytorch tensor (needs to be [C,H,W] as per conv2d definition)
auto input_ = torch::tensor(at::ArrayRef<uint8_t>(cv_rgb.data, cv_rgb.rows * cv_rgb.cols * 3)).view({cv_rgb.rows, cv_rgb.cols, 3});
auto label_ = torch::tensor(at::ArrayRef<uint8_t>(cv_labelids.data, cv_labelids.rows * cv_labelids.cols * 1))
.view({cv_labelids.rows, cv_labelids.cols, 1});
// Note that opencv stores things in [rgb,row,col] so we need to flip it after loading it into the tensor
// Our view is of the "outer most" dimension, so we start with the number of columns, then rows, then the rgb
input_ = input_.permute({2, 0, 1}).clone();
label_ = label_.permute({2, 0, 1}).clone();
// Convert our tensors to float and long types
// Also we scale our input rbg image to be between [0..1]
input_ = input_.to(torch::kFloat);
input_ = input_ / 255.0;
label_ = label_.to(torch::kLong);
// // Debug code to check that we are reading labels in correctly (should be in 0-5 range)
// auto foo_a = label_.accessor<long, 3>();
// for (int i = 0; i < foo_a.size(1); i++) {
// for (int j = 0; j < foo_a.size(2); j++) {
// if (foo_a[0][i][j] < 0 || foo_a[0][i][j] > 3) {
// std::cout << 0 << "," << i << "," << j << " = " << label_[0][i][j] << std::endl;
// }
// }
// }
// Return our input and target
return torch::data::Example<>(input_, label_);
}