diff --git a/FormalConjectures/ErdosProblems/124.lean b/FormalConjectures/ErdosProblems/124.lean index b0d9c710a..29d23f5cb 100644 --- a/FormalConjectures/ErdosProblems/124.lean +++ b/FormalConjectures/ErdosProblems/124.lean @@ -15,11 +15,6 @@ limitations under the License. -/ import FormalConjectures.Util.ProblemImports -open Nat Finset Filter -open scoped Real - -namespace Erdos124 - /-! # Erdős Problem 124 @@ -28,23 +23,81 @@ namespace Erdos124 - [BEGL96] Burr, S. A. and Erdős, P. and Graham, R. L. and Li, W. Wen-Ching, Complete sequences of sets of integer powers. Acta Arith. (1996), 133-138. -/ +open Filter +open scoped Pointwise + +namespace Erdos124 + +/-- The set of integers which are the sum of distinct powers `d ^ i` with `i ≥ k`. -/ +def sumsOfDistinctPowers (d k : ℕ) : Set ℕ := + {x | ∃ s : Finset ℕ, (∀ i ∈ s, k ≤ i) ∧ ∑ i ∈ s, d ^ i = x} + /-- -Let $3\leq d_1 < d_2 < \cdots < d_k$ be integers such that -$$\sum_{1\leq i\leq k}\frac{1}{d_i-1}\geq 1.$$ +Let $3 \le d_1 < d_2 < \dots < d_r$ be integers such that +$$\sum_{1 \le i \le r}\frac 1{d_i - 1} \ge 1.$$ Can all sufficiently large integers be written as a sum of the shape $\sum_i c_ia_i$ -where $c_i\in \{0, 1\}$ and $a_i$ has only the digits $0, 1$ when written in base $d_i$? +where $c_i \in \{0, 1\}$ and $a_i$ has only the digits $0, 1$ when written in base $d_i$? + +Conjectured by Erdős [Er97], solved by Boris Alexeev using Aristotle. +-/ +@[category research solved, AMS 11] +lemma erdos124.zero : answer(True) ↔ + ∀ D : Finset ℕ, (∀ d ∈ D, 3 ≤ d) → 1 ≤ ∑ d ∈ D, (d - 1 : ℚ)⁻¹ → + ∀ᶠ n in atTop, n ∈ ∑ d ∈ D, sumsOfDistinctPowers d 0 := sorry + +/-- +Let $k \ne 0$ and $3\leq d_1 < d_2 < \cdots < d_r$ be integers of gcd equal to $1$ such that +$$\sum_{1 \le i \le r}\frac 1{d_i - 1} \ge 1.$$ +Can all sufficiently large integers be written as a sum of the shape $\sum_i c_ia_i$ +where $c_i \in \{0, 1\}$ and $a_i$ is divisible by $d_i ^ k$ and has only the digits $0, 1$ when +written in base $d_i$? Conjectured by Burr, Erdős, Graham, and Li [BEGL96] -/ @[category research open, AMS 11] -theorem erdos_124 : (∀ k, ∀ d : Fin k → ℕ, - (∀ i, 3 ≤ d i) → StrictMono d → 1 ≤ ∑ i : Fin k, (1 : ℚ) / (d i - 1) → - ∀ᶠ n in atTop, ∃ c : Fin k → ℕ, ∃ a : Fin k → ℕ, - ∀ i, c i ∈ ({0, 1} : Finset ℕ) ∧ - ∀ i, ((d i).digits (a i)).toFinset ⊆ {0, 1} ∧ - n = ∑ i, c i * a i) ↔ answer(sorry) := by +lemma erdos124.ne_zero : answer(sorry) ↔ + ∀ k ≠ 0, ∀ D : Finset ℕ, (∀ d ∈ D, 3 ≤ d) → 1 ≤ ∑ d ∈ D, (d - 1 : ℚ)⁻¹ → D.gcd id = 1 → + ∀ᶠ n in atTop, n ∈ ∑ d ∈ D, sumsOfDistinctPowers d k := + sorry + +/-- +All sufficiently large integers can be written as $a + b + c$ where $a$ has only the digits $0, 1$ +in base $3$, $b$ only the digits $0, 1$ in base $4$, $c$ only the digits $0, 1$ in base $7$. + +Provee by Burr, Erdős, Graham, and Li [BEGL96] +-/ +@[category research solved, AMS 11] +lemma erdos124.ne_zero_three_four_seven {k : ℕ} (hk : k ≠ 0) : + ∀ᶠ n in atTop, + n ∈ sumsOfDistinctPowers 3 k + sumsOfDistinctPowers 4 k + sumsOfDistinctPowers 7 k := sorry --- TODO(firsching): formalize the other two claims from the additional material +/-- +Let $3\leq d_1 < d_2 < \cdots < d_r$ be integers such that all sufficiently large integers can be +written as a sum of the shape $\sum_i c_ia_i$ where $c_i \in \{0, 1\}$ and $a_i$ has only the digits +$0, 1$ when written in base $d_i$. Then +$$\sum_{1 \le i \le r}\frac 1{d_i - 1} \ge 1.$$ + +Reported by Burr, Erdős, Graham, and Li [BEGL96] as an observation of Pomerance +-/ +@[category research solved, AMS 11] +lemma erdos124.converse {D : Finset ℕ} (hD₃ : ∀ d ∈ D, 3 ≤ d) + (h : ∀ᶠ n in atTop, n ∈ ∑ d ∈ D, sumsOfDistinctPowers d 0) : 1 ≤ ∑ d ∈ D, (d - 1 : ℚ)⁻¹ := + sorry + +/-- +For any $\varepsilon > 0$, there exists an infinite sequence $2 \le d_0 < d_1 < \dots$ such +that all sufficiently large integer can be written as $\sum_{i \in I} a_i$ where $a_i$ has only +the digits $0, 1$ when written in base $d_i$, +but $\sum_{i \in I} \frac 1{d_i - 1} \le \varepsilon$. + +Proved by Melfi [Me04] +-/ +@[category research solved, AMS 11] +lemma erdos124.melfi_construction {ε : ℝ} (hε : 0 < ε) : + ∃ d : ℕ → ℕ, StrictMono d ∧ ∑' i, (d i - 1 : ℝ)⁻¹ ≤ ε ∧ ∀ᶠ n in atTop, + ∃ (I : Finset ℕ) (a : ℕ → ℕ), (∀ i ∈ I, a i ∈ sumsOfDistinctPowers (d i) 0) ∧ + ∑ i ∈ I, a i = n := + sorry end Erdos124