diff --git a/FormalConjectures/ErdosProblems/659.lean b/FormalConjectures/ErdosProblems/659.lean index 09dc8b743..9f7f48247 100644 --- a/FormalConjectures/ErdosProblems/659.lean +++ b/FormalConjectures/ErdosProblems/659.lean @@ -22,24 +22,18 @@ import FormalConjectures.Util.ProblemImports *Reference:* [erdosproblems.com/659](https://www.erdosproblems.com/659) -/ -open EuclideanGeometry Finset +open EuclideanGeometry Finset Real namespace Erdos659 -/-- The minimum number of distinct distances determined by any subset of `points` of size `n`. -/ -noncomputable def minimalDistinctDistancesSubsetOfSize (points : Set ℝ²) (n : ℕ) : ℕ := - sInf {(distinctDistances subset : ℝ) | - (subset : Finset ℝ²) (_ : subset.toSet ⊆ points) (_ : subset.card = n)} - /-- Is there a set of $n$ points in $\mathbb{R}^2$ such that every subset of $4$ points determines at least $3$ distances, yet the total number of distinct distances is $\ll \frac{n}{\sqrt{\log n}}$? -/ @[category research open, AMS 52] -theorem erdos_659 : answer(sorry) ↔ ∃ (a : ℕ → Finset ℝ²), ∀ n, #(a n) = n ∧ - 3 ≤ minimalDistinctDistancesSubsetOfSize (a n) 4 ∧ - (fun n => (distinctDistances (a n) : ℝ)) ≪ fun (n : ℕ) => n / (n : ℝ).log.sqrt := by +theorem erdos_659 : answer(sorry) ↔ ∃ A : ℕ → Finset ℝ², + (∀ n, #(A n) = n ∧ ∀ S ⊆ A n, #S = 4 → 3 ≤ distinctDistances S) ∧ + (fun n ↦ distinctDistances (A n)) ≪ fun n ↦ n / sqrt (log n) := sorry - end Erdos659 diff --git a/FormalConjecturesForMathlib/Analysis/Asymptotics/Basic.lean b/FormalConjecturesForMathlib/Analysis/Asymptotics/Basic.lean index 9c31d6253..59c3b4b0c 100644 --- a/FormalConjecturesForMathlib/Analysis/Asymptotics/Basic.lean +++ b/FormalConjecturesForMathlib/Analysis/Asymptotics/Basic.lean @@ -17,5 +17,5 @@ limitations under the License. import Mathlib.Analysis.Asymptotics.Defs import Mathlib.Order.Filter.AtTopBot.Defs -notation f " ≫ " g => Asymptotics.IsBigO Filter.atTop g f -notation g " ≪ " f => Asymptotics.IsBigO Filter.atTop g f +notation f " ≫ " g => Asymptotics.IsBigO Filter.atTop (g : ℕ → ℝ) (f : ℕ → ℝ) +notation g " ≪ " f => Asymptotics.IsBigO Filter.atTop (g : ℕ → ℝ) (f : ℕ → ℝ)