diff --git a/FormalConjectures/ErdosProblems/859.lean b/FormalConjectures/ErdosProblems/859.lean index f8350345c..79c716788 100644 --- a/FormalConjectures/ErdosProblems/859.lean +++ b/FormalConjectures/ErdosProblems/859.lean @@ -37,9 +37,9 @@ The density `dₜ` of `DivisorSumSet (t : ℕ)` is bounded from below by `1 / lo from above by `1 / log (t) ^ c₄` for some positive constants `c₃` and `c₄`. -/ @[category research solved, AMS 11] -theorem erdos_859.variants.erdos_upper_lower_bounds : ∃ᵉ (c₃ > 0) (c₄ > 0) (t₀ : ℕ), ∀ t > t₀, - ∃ dₜ : ℝ, ((DivisorSumSet t).HasDensity dₜ) ∧ - (1 / (Real.log t)^c₃ < dₜ) ∧ (dₜ < 1 / (Real.log t)^c₄) := by +theorem erdos_859.variants.erdos_upper_lower_bounds : ∃ᵉ (c₃ > (0 : ℝ)) (c₄ > (0 : ℝ)) (t₀ : ℕ), + ∀ᶠ t in atTop, ∃ dₜ : ℝ, (DivisorSumSet t).HasDensity dₜ ∧ + 1 / Real.log t ^ c₃ < dₜ ∧ dₜ < 1 / Real.log t ^ c₄ := by sorry @@ -49,8 +49,9 @@ The density `dₜ` of `DivisorSumSet (t : ℕ)` is assymptotically equivalent to for some positive constants `c₁` and `c₂`. -/ @[category research open, AMS 11] -theorem erdos_859 (t : ℕ) : ∃ c₁ > 0, ∃ c₂ > 0, ∃ dₜ : ℝ, ((DivisorSumSet t).HasDensity dₜ) ∧ - (fun (t : ℕ) ↦ dₜ) ~[atTop] (fun t ↦ c₁ / (Real.log t)^c₂ ) := by +theorem erdos_859 : + ∃ c₁ > 0, ∃ c₂ > (0 : ℝ), ∃ d : ℕ → ℝ, (∀ t > 0, (DivisorSumSet t).HasDensity (d t)) ∧ + (fun (t : ℕ) ↦ d t) ~[atTop] (fun t ↦ c₁ / Real.log t ^ c₂) := by sorry /-