diff --git a/FormalConjectures/ErdosProblems/33.lean b/FormalConjectures/ErdosProblems/33.lean index 8da5cb810..1d1b74bb6 100644 --- a/FormalConjectures/ErdosProblems/33.lean +++ b/FormalConjectures/ErdosProblems/33.lean @@ -38,13 +38,11 @@ def AdditiveBasisCondition (A : Set ℕ) : Prop := /-- Let `A ⊆ ℕ` be a set such that every integer can be written as `n^2 + a` for some `a` in `A` and `n ≥ 0`. What is the smallest possible value of -`lim sup n → ∞ |A ∩ {1, …, N}| / N^(1/2) = 0`? +`lim sup n → ∞ |A ∩ {1, …, N}| / N^(1/2)`? -/ @[category research open, AMS 11] -theorem erdos_33 : IsLeast - { c : EReal | ∃ (A : Set ℕ), AdditiveBasisCondition A ∧ - Filter.atTop.limsup (fun N => (A.interIcc 1 N).ncard / √N) = c} - answer(sorry) := by +theorem erdos_33 : ⨅ A : {A : Set ℕ | AdditiveBasisCondition A}, Filter.atTop.limsup (fun N => + (A.1.interIcc 1 N).ncard / (√N : EReal)) = answer(sorry) := by sorry /-- @@ -56,14 +54,14 @@ theorem erdos_33.variants.one_mem_lowerBounds : ∃ A, AdditiveBasisCondition A sorry /-- -The smallest possible value of `lim sup n → ∞ |A ∩ {1, …, N}| / N^(1/2) = 0` +The smallest possible value of `lim sup n → ∞ |A ∩ {1, …, N}| / N^(1/2)` is at most `2φ^(5/2) ≈ 6.66`, with `φ` equal to the golden ratio. Proven by Wouter van Doorn. -/ @[category research solved, AMS 11] theorem erdos_33.variants.vanDoorn : - ↑(2 * (φ ^ ((5 : ℝ) / 2))) ∈ lowerBounds { c : EReal | ∃ (A : Set ℕ), AdditiveBasisCondition A ∧ - Filter.atTop.limsup (fun N => (A.interIcc 1 N).ncard / (√N)) = c} := by + ⨅ A : {A : Set ℕ | AdditiveBasisCondition A}, Filter.atTop.limsup (fun N => + (A.1.interIcc 1 N).ncard / (√N : EReal)) ≤ ↑(2 * (φ ^ ((5 : ℝ) / 2))) := by sorry end Erdos33