diff --git a/FormalConjectures/ErdosProblems/566.lean b/FormalConjectures/ErdosProblems/566.lean index 6870d99e5..56711ca94 100644 --- a/FormalConjectures/ErdosProblems/566.lean +++ b/FormalConjectures/ErdosProblems/566.lean @@ -35,19 +35,6 @@ namespace Erdos566 open SimpleGraph -/-- -The size Ramsey number `r̂(G, H)` is the minimum number of edges in a graph `F` -such that any 2-coloring of `F`'s edges contains a copy of `G` in one color or `H` in the other. - -A 2-coloring is represented by a subgraph `R ≤ F` (the "red" edges); the "blue" edges are `F \ R`. --/ -noncomputable def sizeRamsey {α β : Type*} [Fintype α] [Fintype β] - (G : SimpleGraph α) (H : SimpleGraph β) : ℕ := - sInf { m | ∃ (n : ℕ) (F : SimpleGraph (Fin n)), - F.edgeSet.ncard = m ∧ - ∀ (R : SimpleGraph (Fin n)), R ≤ F → - G.IsContained R ∨ H.IsContained (F \ R) } - /-- **Erdős Problem 566** diff --git a/FormalConjectures/ErdosProblems/567.lean b/FormalConjectures/ErdosProblems/567.lean new file mode 100644 index 000000000..273b71d62 --- /dev/null +++ b/FormalConjectures/ErdosProblems/567.lean @@ -0,0 +1,81 @@ +/- +Copyright 2025 The Formal Conjectures Authors. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + https://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +-/ + +import FormalConjectures.Util.ProblemImports + +/-! +# Erdős Problem 567 + +Let $G$ be either $Q_3$ or $K_{3,3}$ or $H_5$ (the last formed by adding two vertex-disjoint chords +to $C_5$). Is it true that, if $H$ has $m$ edges and no isolated vertices, then +$$ \hat{r}(G,H) \ll m? $$ + +In other words, is $G$ Ramsey size linear? A special case of Problem 566. + +*Reference:* [erdosproblems.com/567](https://www.erdosproblems.com/567) + +[EFRS93] Erdős, Faudree, Rousseau and Schelp, _Ramsey size linear graphs_. +Combin. Probab. Comput. (1993), 389-399. +-/ + +namespace Erdos567 + +open SimpleGraph +open scoped Finset + +/-- $Q_3$ is the 3-dimensional hypercube graph (8 vertices, 12 edges). +Vertices are 3-bit vectors. Two vertices are adjacent iff they differ in exactly one bit. -/ +def Q3 : SimpleGraph (Fin 3 → Bool) where + Adj u v := #{i | u i ≠ v i} = 1 + symm _ _ := by simp [eq_comm] + loopless _ := by simp + +/-- $K_{3,3}$ is the complete bipartite graph with partition sizes 3, 3 (6 vertices, 9 edges). -/ +def K33 : SimpleGraph (Fin 3 ⊕ Fin 3) := completeBipartiteGraph (Fin 3) (Fin 3) + +/-- $H_5$ is $C_5$ with two vertex-disjoint chords (5 vertices, 7 edges). +Also known as $K_4^*$ (the graph obtained from $K_4$ by subdividing one edge). -/ +def H5 : SimpleGraph (Fin 5) := + .cycleGraph 5 ⊔ .edge 0 2 ⊔ .edge 1 3 + +/-- +**Erdős Problem 567 (Q3)** + +Is $Q_3$ (the 3-dimensional hypercube) Ramsey size linear? +-/ +@[category research open, AMS 05] +theorem erdos_567_Q3 : answer(sorry) ↔ IsRamseySizeLinear Q3 := by + sorry + +/-- +**Erdős Problem 567 (K33)** + +Is $K_{3,3}$ Ramsey size linear? +-/ +@[category research open, AMS 05] +theorem erdos_567_K33 : answer(sorry) ↔ IsRamseySizeLinear K33 := by + sorry + +/-- +**Erdős Problem 567 (H5)** + +Is $H_5$ ($C_5$ with two vertex-disjoint chords) Ramsey size linear? +-/ +@[category research open, AMS 05] +theorem erdos_567_H5 : answer(sorry) ↔ IsRamseySizeLinear H5 := by + sorry + +end Erdos567 diff --git a/FormalConjecturesForMathlib.lean b/FormalConjecturesForMathlib.lean index 36076332a..5884fd7b6 100644 --- a/FormalConjecturesForMathlib.lean +++ b/FormalConjecturesForMathlib.lean @@ -37,6 +37,7 @@ import FormalConjecturesForMathlib.Combinatorics.SimpleGraph.DiamExtra import FormalConjecturesForMathlib.Combinatorics.SimpleGraph.GraphConjectures.Definitions import FormalConjecturesForMathlib.Combinatorics.SimpleGraph.GraphConjectures.Domination import FormalConjecturesForMathlib.Combinatorics.SimpleGraph.GraphConjectures.Invariants +import FormalConjecturesForMathlib.Combinatorics.SimpleGraph.SizeRamsey import FormalConjecturesForMathlib.Computability.Encoding import FormalConjecturesForMathlib.Computability.TuringMachine.BusyBeavers import FormalConjecturesForMathlib.Computability.TuringMachine.Notation diff --git a/FormalConjecturesForMathlib/Combinatorics/SimpleGraph/SizeRamsey.lean b/FormalConjecturesForMathlib/Combinatorics/SimpleGraph/SizeRamsey.lean new file mode 100644 index 000000000..164b6a001 --- /dev/null +++ b/FormalConjecturesForMathlib/Combinatorics/SimpleGraph/SizeRamsey.lean @@ -0,0 +1,57 @@ +/- +Copyright 2025 The Formal Conjectures Authors. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + https://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +-/ + +import Mathlib.Combinatorics.SimpleGraph.Copy +import Mathlib.Data.Nat.Lattice +import Mathlib.Data.Real.Basic +import Mathlib.Data.Set.Card + +/-! +# Size Ramsey Number + +This file defines the size Ramsey number for simple graphs. + +## Definition + +The size Ramsey number `r̂(G, H)` is the minimum number of edges in a graph `F` +such that any 2-coloring of `F`'s edges contains a copy of `G` in one color or `H` in the other. +-/ + +namespace SimpleGraph + +/-- +The size Ramsey number `r̂(G, H)` is the minimum number of edges in a graph `F` +such that any 2-coloring of `F`'s edges contains a copy of `G` in one color or `H` in the other. + +A 2-coloring is represented by a subgraph `R ≤ F` (the "red" edges); the "blue" edges are `F \ R`. +-/ +noncomputable def sizeRamsey {α β : Type*} [Fintype α] [Fintype β] + (G : SimpleGraph α) (H : SimpleGraph β) : ℕ := + sInf { m | ∃ (n : ℕ) (F : SimpleGraph (Fin n)), + F.edgeSet.ncard = m ∧ + ∀ (R : SimpleGraph (Fin n)), R ≤ F → + G.IsContained R ∨ H.IsContained (F \ R) } + +/-- +A graph `G` is **Ramsey size linear** if there exists a constant `c > 0` such that +for all graphs `H` with `m` edges and no isolated vertices, `r̂(G, H) ≤ c · m`. +-/ +def IsRamseySizeLinear {α : Type*} [Fintype α] (G : SimpleGraph α) : Prop := + ∃ c > (0 : ℝ), ∀ (n : ℕ) (H : SimpleGraph (Fin n)) [DecidableRel H.Adj], + (∀ v, 0 < H.degree v) → + (sizeRamsey G H : ℝ) ≤ c * H.edgeSet.ncard + +end SimpleGraph