diff --git a/python/examples/py/FeatureCollection/count_features.py b/python/examples/py/FeatureCollection/count_features.py index cd69d4a73..1b95f9641 100644 --- a/python/examples/py/FeatureCollection/count_features.py +++ b/python/examples/py/FeatureCollection/count_features.py @@ -10,8 +10,8 @@ photos_near_sf = ee.FeatureCollection('GOOGLE/EE/DEMOS/sf-photo-locations') bridge_photos = photos_near_sf.filter( - ee.Filter().Or(ee.Filter.stringContains('title', 'Bridge'), - ee.Filter.stringContains('title', 'bridge'))) + ee.Filter.Or(ee.Filter.stringContains('title', 'Bridge'), + ee.Filter.stringContains('title', 'bridge'))) ee.mapclient.addToMap(photos_near_sf, {'color': '0040b0'}) ee.mapclient.addToMap(bridge_photos, {'color': 'e02070'}) diff --git a/python/examples/py/FeatureCollection/reverse_mask.py b/python/examples/py/FeatureCollection/reverse_mask.py index adf58c602..909e0214c 100644 --- a/python/examples/py/FeatureCollection/reverse_mask.py +++ b/python/examples/py/FeatureCollection/reverse_mask.py @@ -10,7 +10,7 @@ ee.mapclient.centerMap(-115, 39, 5) fc = (ee.FeatureCollection('RESOLVE/ECOREGIONS/2017') - .filter(ee.Filter().eq('ECO_NAME', 'Great Basin shrub steppe'))) + .filter(ee.Filter.eq('ECO_NAME', 'Great Basin shrub steppe'))) # Start with a black image. empty = ee.Image(0).toByte() diff --git a/python/examples/py/ImageCollection/clipped_composite.py b/python/examples/py/ImageCollection/clipped_composite.py index 57f263396..c8f9254ab 100644 --- a/python/examples/py/ImageCollection/clipped_composite.py +++ b/python/examples/py/ImageCollection/clipped_composite.py @@ -19,7 +19,7 @@ # Clip to the output image to the California state boundary. fc = (ee.FeatureCollection('TIGER/2018/States') - .filter(ee.Filter().eq('NAME', 'California'))) + .filter(ee.Filter.eq('NAME', 'California'))) image2 = image1.clipToCollection(fc) # Select the red, green and blue bands.