forked from dj-on-github/sp800_22_tests
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sp800_22_cumulative_sums_test.py
107 lines (92 loc) · 3.18 KB
/
sp800_22_cumulative_sums_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/env python
# sp800_22_cumulative_sums_test.py
#
# Copyright (C) 2017 David Johnston
# This program is distributed under the terms of the GNU General Public License.
#
# This file is part of sp800_22_tests.
#
# sp800_22_tests is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# sp800_22_tests is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with sp800_22_tests. If not, see <http://www.gnu.org/licenses/>.
from __future__ import print_function
import math
#from scipy.special import gamma, gammainc, gammaincc
from gamma_functions import *
#import scipy.stats
def normcdf(n):
return 0.5 * math.erfc(-n * math.sqrt(0.5))
def p_value(n,z):
sum_a = 0.0
startk = int(math.floor((((float(-n)/z)+1.0)/4.0)))
endk = int(math.floor((((float(n)/z)-1.0)/4.0)))
for k in range(startk,endk+1):
c = (((4.0*k)+1.0)*z)/math.sqrt(n)
#d = scipy.stats.norm.cdf(c)
d = normcdf(c)
c = (((4.0*k)-1.0)*z)/math.sqrt(n)
#e = scipy.stats.norm.cdf(c)
e = normcdf(c)
sum_a = sum_a + d - e
sum_b = 0.0
startk = int(math.floor((((float(-n)/z)-3.0)/4.0)))
endk = int(math.floor((((float(n)/z)-1.0)/4.0)))
for k in range(startk,endk+1):
c = (((4.0*k)+3.0)*z)/math.sqrt(n)
#d = scipy.stats.norm.cdf(c)
d = normcdf(c)
c = (((4.0*k)+1.0)*z)/math.sqrt(n)
#e = scipy.stats.norm.cdf(c)
e = normcdf(c)
sum_b = sum_b + d - e
p = 1.0 - sum_a + sum_b
return p
def cumulative_sums_test(bits):
n = len(bits)
# Step 1
x = list() # Convert to +1,-1
for bit in bits:
#if bit == 0:
x.append((bit*2)-1)
# Steps 2 and 3 Combined
# Compute the partial sum and records the largest excursion.
pos = 0
forward_max = 0
for e in x:
pos = pos+e
if abs(pos) > forward_max:
forward_max = abs(pos)
pos = 0
backward_max = 0
for e in reversed(x):
pos = pos+e
if abs(pos) > backward_max:
backward_max = abs(pos)
# Step 4
p_forward = p_value(n, forward_max)
p_backward = p_value(n,backward_max)
success = ((p_forward >= 0.01) and (p_backward >= 0.01))
plist = [p_forward, p_backward]
if success:
print("PASS")
else:
print("FAIL: Data not random")
return (success, None, plist)
if __name__ == "__main__":
bits = [1,1,0,0,1,0,0,1,0,0,0,0,1,1,1,1,1,1,0,1,
1,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,
0,1,1,0,1,0,0,0,1,1,0,0,0,0,1,0,0,0,1,1,
0,1,0,0,1,1,0,0,0,1,0,0,1,1,0,0,0,1,1,0,
0,1,1,0,0,0,1,0,1,0,0,0,1,0,1,1,1,0,0,0]
success, _, plist = cumulative_sums_test(bits)
print("success =",success)
print("plist = ",plist)