diff --git a/nbs/99_manuscript/time_test/07-time_test-plot.ipynb b/nbs/99_manuscript/time_test/07-time_test-plot.ipynb
index 8361bb73..9d044c7b 100644
--- a/nbs/99_manuscript/time_test/07-time_test-plot.ipynb
+++ b/nbs/99_manuscript/time_test/07-time_test-plot.ipynb
@@ -56,12 +56,6 @@
"execution_count": 1,
"id": "77e9d29d-5307-4b4a-b103-7d1fbd6a7e56",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.190096Z",
- "iopub.status.busy": "2023-09-11T14:41:55.189754Z",
- "iopub.status.idle": "2023-09-11T14:41:55.475757Z",
- "shell.execute_reply": "2023-09-11T14:41:55.475491Z"
- },
"papermill": {
"duration": 0.289439,
"end_time": "2023-09-11T14:41:55.476659",
@@ -102,12 +96,6 @@
"execution_count": 2,
"id": "6efda92a-579a-49e2-893f-ec3a40db8a26",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.494078Z",
- "iopub.status.busy": "2023-09-11T14:41:55.493996Z",
- "iopub.status.idle": "2023-09-11T14:41:55.496166Z",
- "shell.execute_reply": "2023-09-11T14:41:55.495801Z"
- },
"papermill": {
"duration": 0.005213,
"end_time": "2023-09-11T14:41:55.496697",
@@ -144,12 +132,6 @@
"execution_count": 3,
"id": "413010af-a3b0-45a0-adb8-8559c06d228c",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.504959Z",
- "iopub.status.busy": "2023-09-11T14:41:55.504898Z",
- "iopub.status.idle": "2023-09-11T14:41:55.506282Z",
- "shell.execute_reply": "2023-09-11T14:41:55.506148Z"
- },
"papermill": {
"duration": 0.004166,
"end_time": "2023-09-11T14:41:55.506776",
@@ -171,12 +153,6 @@
"execution_count": 4,
"id": "456e7f20-5950-4cbf-8652-cf6e37fb6231",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.511029Z",
- "iopub.status.busy": "2023-09-11T14:41:55.510980Z",
- "iopub.status.idle": "2023-09-11T14:41:55.513355Z",
- "shell.execute_reply": "2023-09-11T14:41:55.513222Z"
- },
"papermill": {
"duration": 0.005116,
"end_time": "2023-09-11T14:41:55.513851",
@@ -208,12 +184,6 @@
"execution_count": 5,
"id": "2404761b-2931-4394-914e-e2cae9990d5c",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.518288Z",
- "iopub.status.busy": "2023-09-11T14:41:55.518180Z",
- "iopub.status.idle": "2023-09-11T14:41:55.519861Z",
- "shell.execute_reply": "2023-09-11T14:41:55.519735Z"
- },
"papermill": {
"duration": 0.004463,
"end_time": "2023-09-11T14:41:55.520334",
@@ -245,12 +215,6 @@
"execution_count": 6,
"id": "0b5ba2a4-54a7-4853-b804-cd2e5c476466",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.524673Z",
- "iopub.status.busy": "2023-09-11T14:41:55.524580Z",
- "iopub.status.idle": "2023-09-11T14:41:55.526064Z",
- "shell.execute_reply": "2023-09-11T14:41:55.525941Z"
- },
"papermill": {
"duration": 0.004351,
"end_time": "2023-09-11T14:41:55.526672",
@@ -298,12 +262,6 @@
"execution_count": 7,
"id": "d98986f3-badc-4760-8eed-e24b00ce2696",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.534990Z",
- "iopub.status.busy": "2023-09-11T14:41:55.534900Z",
- "iopub.status.idle": "2023-09-11T14:41:55.537015Z",
- "shell.execute_reply": "2023-09-11T14:41:55.536852Z"
- },
"papermill": {
"duration": 0.004893,
"end_time": "2023-09-11T14:41:55.537517",
@@ -323,12 +281,6 @@
"execution_count": 8,
"id": "69511566-f1cd-4d19-ab2d-48d64b1e5055",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.541957Z",
- "iopub.status.busy": "2023-09-11T14:41:55.541866Z",
- "iopub.status.idle": "2023-09-11T14:41:55.543394Z",
- "shell.execute_reply": "2023-09-11T14:41:55.543268Z"
- },
"papermill": {
"duration": 0.004268,
"end_time": "2023-09-11T14:41:55.543816",
@@ -342,7 +294,7 @@
{
"data": {
"text/plain": [
- "(15960, 4)"
+ "(10660, 4)"
]
},
"execution_count": 8,
@@ -359,12 +311,6 @@
"execution_count": 9,
"id": "6fc64cc3-264e-49a7-bbf9-af255e151118",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.548234Z",
- "iopub.status.busy": "2023-09-11T14:41:55.548148Z",
- "iopub.status.idle": "2023-09-11T14:41:55.551615Z",
- "shell.execute_reply": "2023-09-11T14:41:55.551488Z"
- },
"papermill": {
"duration": 0.006185,
"end_time": "2023-09-11T14:41:55.552053",
@@ -407,36 +353,36 @@
"
0 | \n",
" 100 | \n",
" p-1 | \n",
- " 0.000090 | \n",
- " -0.002969 | \n",
+ " 0.000098 | \n",
+ " -0.085291 | \n",
" \n",
" \n",
" 1 | \n",
" 100 | \n",
" p-1 | \n",
- " 0.000064 | \n",
- " 0.043811 | \n",
+ " 0.000035 | \n",
+ " -0.174309 | \n",
"
\n",
" \n",
" 2 | \n",
" 100 | \n",
" p-1 | \n",
- " 0.000031 | \n",
- " 0.001142 | \n",
+ " 0.000037 | \n",
+ " 0.004494 | \n",
"
\n",
" \n",
" 3 | \n",
" 100 | \n",
" p-1 | \n",
- " 0.000085 | \n",
- " 0.258282 | \n",
+ " 0.000031 | \n",
+ " -0.035394 | \n",
"
\n",
" \n",
" 4 | \n",
" 100 | \n",
" p-1 | \n",
- " 0.000031 | \n",
- " 0.041389 | \n",
+ " 0.000030 | \n",
+ " 0.066687 | \n",
"
\n",
" \n",
"\n",
@@ -444,11 +390,11 @@
],
"text/plain": [
" data_size method time sim\n",
- "0 100 p-1 0.000090 -0.002969\n",
- "1 100 p-1 0.000064 0.043811\n",
- "2 100 p-1 0.000031 0.001142\n",
- "3 100 p-1 0.000085 0.258282\n",
- "4 100 p-1 0.000031 0.041389"
+ "0 100 p-1 0.000098 -0.085291\n",
+ "1 100 p-1 0.000035 -0.174309\n",
+ "2 100 p-1 0.000037 0.004494\n",
+ "3 100 p-1 0.000031 -0.035394\n",
+ "4 100 p-1 0.000030 0.066687"
]
},
"execution_count": 9,
@@ -465,12 +411,6 @@
"execution_count": 10,
"id": "511fbab5-e6a0-47a0-8ab6-329f65719a83",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.556510Z",
- "iopub.status.busy": "2023-09-11T14:41:55.556456Z",
- "iopub.status.idle": "2023-09-11T14:41:55.558426Z",
- "shell.execute_reply": "2023-09-11T14:41:55.558299Z"
- },
"papermill": {
"duration": 0.004724,
"end_time": "2023-09-11T14:41:55.558865",
@@ -519,12 +459,6 @@
"execution_count": 11,
"id": "81703394-a7f1-48d6-974a-b987b4dd4c4d",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.567677Z",
- "iopub.status.busy": "2023-09-11T14:41:55.567572Z",
- "iopub.status.idle": "2023-09-11T14:41:55.571293Z",
- "shell.execute_reply": "2023-09-11T14:41:55.571152Z"
- },
"papermill": {
"duration": 0.006496,
"end_time": "2023-09-11T14:41:55.571718",
@@ -559,12 +493,6 @@
"execution_count": 12,
"id": "e8b96624-7b6c-4ce7-a1c7-d8f2cabab649",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.576326Z",
- "iopub.status.busy": "2023-09-11T14:41:55.576240Z",
- "iopub.status.idle": "2023-09-11T14:41:55.577700Z",
- "shell.execute_reply": "2023-09-11T14:41:55.577572Z"
- },
"papermill": {
"duration": 0.00431,
"end_time": "2023-09-11T14:41:55.578160",
@@ -578,7 +506,7 @@
{
"data": {
"text/plain": [
- "(15960, 4)"
+ "(10660, 4)"
]
},
"execution_count": 12,
@@ -595,12 +523,6 @@
"execution_count": 13,
"id": "6d49c62c-1fcb-4caa-b1f4-e7a224bd3c9b",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.595483Z",
- "iopub.status.busy": "2023-09-11T14:41:55.595365Z",
- "iopub.status.idle": "2023-09-11T14:41:55.598779Z",
- "shell.execute_reply": "2023-09-11T14:41:55.598633Z"
- },
"papermill": {
"duration": 0.018941,
"end_time": "2023-09-11T14:41:55.599209",
@@ -643,36 +565,36 @@
" 0 | \n",
" 100 | \n",
" Pearson (1 core) | \n",
- " 0.000090 | \n",
- " -0.002969 | \n",
+ " 0.000098 | \n",
+ " -0.085291 | \n",
" \n",
" \n",
" 1 | \n",
" 100 | \n",
" Pearson (1 core) | \n",
- " 0.000064 | \n",
- " 0.043811 | \n",
+ " 0.000035 | \n",
+ " -0.174309 | \n",
"
\n",
" \n",
" 2 | \n",
" 100 | \n",
" Pearson (1 core) | \n",
- " 0.000031 | \n",
- " 0.001142 | \n",
+ " 0.000037 | \n",
+ " 0.004494 | \n",
"
\n",
" \n",
" 3 | \n",
" 100 | \n",
" Pearson (1 core) | \n",
- " 0.000085 | \n",
- " 0.258282 | \n",
+ " 0.000031 | \n",
+ " -0.035394 | \n",
"
\n",
" \n",
" 4 | \n",
" 100 | \n",
" Pearson (1 core) | \n",
- " 0.000031 | \n",
- " 0.041389 | \n",
+ " 0.000030 | \n",
+ " 0.066687 | \n",
"
\n",
" \n",
"\n",
@@ -680,11 +602,11 @@
],
"text/plain": [
" data_size method time sim\n",
- "0 100 Pearson (1 core) 0.000090 -0.002969\n",
- "1 100 Pearson (1 core) 0.000064 0.043811\n",
- "2 100 Pearson (1 core) 0.000031 0.001142\n",
- "3 100 Pearson (1 core) 0.000085 0.258282\n",
- "4 100 Pearson (1 core) 0.000031 0.041389"
+ "0 100 Pearson (1 core) 0.000098 -0.085291\n",
+ "1 100 Pearson (1 core) 0.000035 -0.174309\n",
+ "2 100 Pearson (1 core) 0.000037 0.004494\n",
+ "3 100 Pearson (1 core) 0.000031 -0.035394\n",
+ "4 100 Pearson (1 core) 0.000030 0.066687"
]
},
"execution_count": 13,
@@ -718,12 +640,6 @@
"execution_count": 14,
"id": "3eafa2a7-c008-46b9-9119-a745fe873535",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.608408Z",
- "iopub.status.busy": "2023-09-11T14:41:55.608301Z",
- "iopub.status.idle": "2023-09-11T14:41:55.609543Z",
- "shell.execute_reply": "2023-09-11T14:41:55.609409Z"
- },
"papermill": {
"duration": 0.004096,
"end_time": "2023-09-11T14:41:55.609966",
@@ -743,12 +659,6 @@
"execution_count": 15,
"id": "e1279b36-295c-45d2-a2f1-0388161c724f",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.614664Z",
- "iopub.status.busy": "2023-09-11T14:41:55.614566Z",
- "iopub.status.idle": "2023-09-11T14:41:55.656546Z",
- "shell.execute_reply": "2023-09-11T14:41:55.656410Z"
- },
"papermill": {
"duration": 0.04498,
"end_time": "2023-09-11T14:41:55.657149",
@@ -808,314 +718,314 @@
" 100 | \n",
" CCC (1 core) | \n",
" 1000.0 | \n",
- " 0.000638 | \n",
- " 0.000030 | \n",
- " 0.000616 | \n",
- " 0.000628 | \n",
- " 0.000632 | \n",
- " 0.000637 | \n",
- " 0.001261 | \n",
+ " 0.000641 | \n",
+ " 0.000025 | \n",
+ " 0.000623 | \n",
+ " 0.000631 | \n",
+ " 0.000635 | \n",
+ " 0.000640 | \n",
+ " 0.001048 | \n",
" \n",
" \n",
" CCC (3 cores) | \n",
- " 2000.0 | \n",
- " 0.000864 | \n",
- " 0.000336 | \n",
- " 0.000620 | \n",
- " 0.000635 | \n",
- " 0.000870 | \n",
- " 0.000950 | \n",
- " 0.005126 | \n",
+ " 1000.0 | \n",
+ " 0.001110 | \n",
+ " 0.000416 | \n",
+ " 0.000853 | \n",
+ " 0.000913 | \n",
+ " 0.000944 | \n",
+ " 0.001109 | \n",
+ " 0.004993 | \n",
"
\n",
" \n",
" MIC (1 core) | \n",
" 1000.0 | \n",
- " 0.000725 | \n",
- " 0.000027 | \n",
- " 0.000642 | \n",
- " 0.000706 | \n",
- " 0.000725 | \n",
- " 0.000744 | \n",
- " 0.000810 | \n",
+ " 0.000724 | \n",
+ " 0.000026 | \n",
+ " 0.000635 | \n",
+ " 0.000707 | \n",
+ " 0.000723 | \n",
+ " 0.000741 | \n",
+ " 0.000879 | \n",
"
\n",
" \n",
" MICe (1 core) | \n",
" 1000.0 | \n",
+ " 0.000675 | \n",
+ " 0.000022 | \n",
+ " 0.000604 | \n",
+ " 0.000659 | \n",
" 0.000676 | \n",
- " 0.000027 | \n",
- " 0.000594 | \n",
- " 0.000660 | \n",
- " 0.000677 | \n",
" 0.000691 | \n",
- " 0.001160 | \n",
+ " 0.000740 | \n",
"
\n",
" \n",
" Pearson (1 core) | \n",
" 1000.0 | \n",
- " 0.000030 | \n",
- " 0.000003 | \n",
+ " 0.000031 | \n",
+ " 0.000002 | \n",
" 0.000028 | \n",
" 0.000030 | \n",
- " 0.000030 | \n",
" 0.000031 | \n",
- " 0.000090 | \n",
+ " 0.000031 | \n",
+ " 0.000098 | \n",
"
\n",
" \n",
" Spearman (1 core) | \n",
" 1000.0 | \n",
- " 0.000214 | \n",
- " 0.000012 | \n",
- " 0.000200 | \n",
- " 0.000211 | \n",
+ " 0.000217 | \n",
+ " 0.000017 | \n",
+ " 0.000205 | \n",
" 0.000213 | \n",
- " 0.000216 | \n",
- " 0.000489 | \n",
+ " 0.000215 | \n",
+ " 0.000218 | \n",
+ " 0.000483 | \n",
"
\n",
" \n",
" 500 | \n",
" CCC (1 core) | \n",
" 10.0 | \n",
- " 0.000945 | \n",
- " 0.000049 | \n",
- " 0.000917 | \n",
- " 0.000920 | \n",
- " 0.000930 | \n",
- " 0.000945 | \n",
- " 0.001080 | \n",
+ " 0.000932 | \n",
+ " 0.000034 | \n",
+ " 0.000911 | \n",
+ " 0.000918 | \n",
+ " 0.000921 | \n",
+ " 0.000927 | \n",
+ " 0.001028 | \n",
"
\n",
" \n",
" CCC (3 cores) | \n",
- " 20.0 | \n",
- " 0.001081 | \n",
- " 0.000244 | \n",
- " 0.000916 | \n",
- " 0.000925 | \n",
- " 0.001053 | \n",
- " 0.001110 | \n",
- " 0.001951 | \n",
+ " 10.0 | \n",
+ " 0.001258 | \n",
+ " 0.000292 | \n",
+ " 0.001080 | \n",
+ " 0.001103 | \n",
+ " 0.001132 | \n",
+ " 0.001268 | \n",
+ " 0.002005 | \n",
"
\n",
" \n",
" MIC (1 core) | \n",
" 10.0 | \n",
- " 0.011626 | \n",
- " 0.000200 | \n",
- " 0.011318 | \n",
- " 0.011462 | \n",
- " 0.011678 | \n",
- " 0.011781 | \n",
- " 0.011859 | \n",
+ " 0.011612 | \n",
+ " 0.000258 | \n",
+ " 0.011189 | \n",
+ " 0.011426 | \n",
+ " 0.011671 | \n",
+ " 0.011797 | \n",
+ " 0.011964 | \n",
"
\n",
" \n",
" MICe (1 core) | \n",
" 10.0 | \n",
- " 0.008861 | \n",
- " 0.000099 | \n",
- " 0.008698 | \n",
- " 0.008783 | \n",
- " 0.008898 | \n",
- " 0.008920 | \n",
- " 0.009018 | \n",
+ " 0.008890 | \n",
+ " 0.000098 | \n",
+ " 0.008685 | \n",
+ " 0.008851 | \n",
+ " 0.008900 | \n",
+ " 0.008963 | \n",
+ " 0.008996 | \n",
"
\n",
" \n",
" Pearson (1 core) | \n",
" 10.0 | \n",
- " 0.000039 | \n",
+ " 0.000041 | \n",
" 0.000013 | \n",
- " 0.000031 | \n",
- " 0.000033 | \n",
" 0.000033 | \n",
+ " 0.000034 | \n",
" 0.000035 | \n",
- " 0.000073 | \n",
+ " 0.000042 | \n",
+ " 0.000075 | \n",
"
\n",
" \n",
" Spearman (1 core) | \n",
" 10.0 | \n",
- " 0.000272 | \n",
- " 0.000024 | \n",
- " 0.000259 | \n",
- " 0.000261 | \n",
- " 0.000265 | \n",
+ " 0.000273 | \n",
+ " 0.000023 | \n",
+ " 0.000260 | \n",
+ " 0.000264 | \n",
+ " 0.000266 | \n",
" 0.000268 | \n",
- " 0.000339 | \n",
+ " 0.000336 | \n",
"
\n",
" \n",
" 1000 | \n",
" CCC (1 core) | \n",
" 10.0 | \n",
- " 0.001411 | \n",
- " 0.000045 | \n",
- " 0.001352 | \n",
- " 0.001381 | \n",
- " 0.001394 | \n",
- " 0.001442 | \n",
- " 0.001476 | \n",
+ " 0.001398 | \n",
+ " 0.000047 | \n",
+ " 0.001332 | \n",
+ " 0.001362 | \n",
+ " 0.001389 | \n",
+ " 0.001438 | \n",
+ " 0.001465 | \n",
"
\n",
" \n",
" CCC (3 cores) | \n",
- " 20.0 | \n",
- " 0.001423 | \n",
- " 0.000197 | \n",
- " 0.001305 | \n",
- " 0.001358 | \n",
- " 0.001394 | \n",
- " 0.001403 | \n",
- " 0.002239 | \n",
+ " 10.0 | \n",
+ " 0.001564 | \n",
+ " 0.000341 | \n",
+ " 0.001332 | \n",
+ " 0.001383 | \n",
+ " 0.001409 | \n",
+ " 0.001685 | \n",
+ " 0.002411 | \n",
"
\n",
" \n",
" MIC (1 core) | \n",
" 10.0 | \n",
- " 0.037035 | \n",
- " 0.000359 | \n",
- " 0.036555 | \n",
- " 0.036795 | \n",
- " 0.036971 | \n",
- " 0.037363 | \n",
- " 0.037545 | \n",
+ " 0.037072 | \n",
+ " 0.000457 | \n",
+ " 0.036463 | \n",
+ " 0.036848 | \n",
+ " 0.036995 | \n",
+ " 0.037238 | \n",
+ " 0.037937 | \n",
"
\n",
" \n",
" MICe (1 core) | \n",
" 10.0 | \n",
- " 0.024683 | \n",
- " 0.000105 | \n",
- " 0.024500 | \n",
- " 0.024657 | \n",
- " 0.024675 | \n",
- " 0.024751 | \n",
- " 0.024867 | \n",
+ " 0.024851 | \n",
+ " 0.000125 | \n",
+ " 0.024646 | \n",
+ " 0.024754 | \n",
+ " 0.024871 | \n",
+ " 0.024943 | \n",
+ " 0.025019 | \n",
"
\n",
" \n",
" Pearson (1 core) | \n",
" 10.0 | \n",
" 0.000040 | \n",
- " 0.000018 | \n",
- " 0.000032 | \n",
- " 0.000034 | \n",
+ " 0.000017 | \n",
+ " 0.000033 | \n",
" 0.000034 | \n",
" 0.000035 | \n",
- " 0.000090 | \n",
+ " 0.000035 | \n",
+ " 0.000087 | \n",
"
\n",
" \n",
" Spearman (1 core) | \n",
" 10.0 | \n",
- " 0.000318 | \n",
- " 0.000029 | \n",
- " 0.000294 | \n",
- " 0.000302 | \n",
- " 0.000307 | \n",
- " 0.000320 | \n",
- " 0.000391 | \n",
+ " 0.000319 | \n",
+ " 0.000024 | \n",
+ " 0.000301 | \n",
+ " 0.000304 | \n",
+ " 0.000310 | \n",
+ " 0.000321 | \n",
+ " 0.000376 | \n",
"
\n",
" \n",
" 5000 | \n",
" CCC (1 core) | \n",
" 10.0 | \n",
- " 0.006699 | \n",
- " 0.000153 | \n",
- " 0.006540 | \n",
- " 0.006617 | \n",
- " 0.006644 | \n",
- " 0.006757 | \n",
- " 0.007074 | \n",
+ " 0.006685 | \n",
+ " 0.000091 | \n",
+ " 0.006585 | \n",
+ " 0.006639 | \n",
+ " 0.006668 | \n",
+ " 0.006692 | \n",
+ " 0.006896 | \n",
"
\n",
" \n",
" CCC (3 cores) | \n",
- " 20.0 | \n",
- " 0.005661 | \n",
- " 0.001280 | \n",
- " 0.003849 | \n",
- " 0.004153 | \n",
- " 0.006480 | \n",
- " 0.006716 | \n",
- " 0.006952 | \n",
+ " 10.0 | \n",
+ " 0.004830 | \n",
+ " 0.001123 | \n",
+ " 0.003883 | \n",
+ " 0.004018 | \n",
+ " 0.004404 | \n",
+ " 0.005185 | \n",
+ " 0.007427 | \n",
"
\n",
" \n",
" MIC (1 core) | \n",
" 10.0 | \n",
- " 0.509760 | \n",
- " 0.001702 | \n",
- " 0.506530 | \n",
- " 0.508632 | \n",
- " 0.509907 | \n",
- " 0.511210 | \n",
- " 0.511696 | \n",
+ " 0.510705 | \n",
+ " 0.001836 | \n",
+ " 0.507880 | \n",
+ " 0.509280 | \n",
+ " 0.510705 | \n",
+ " 0.512287 | \n",
+ " 0.513345 | \n",
"
\n",
" \n",
" MICe (1 core) | \n",
" 10.0 | \n",
- " 0.227899 | \n",
- " 0.000712 | \n",
- " 0.226766 | \n",
- " 0.227390 | \n",
- " 0.227958 | \n",
- " 0.228420 | \n",
- " 0.228829 | \n",
+ " 0.228000 | \n",
+ " 0.000698 | \n",
+ " 0.227258 | \n",
+ " 0.227605 | \n",
+ " 0.227923 | \n",
+ " 0.228074 | \n",
+ " 0.229758 | \n",
"
\n",
" \n",
" Pearson (1 core) | \n",
" 10.0 | \n",
- " 0.000051 | \n",
- " 0.000013 | \n",
+ " 0.000050 | \n",
+ " 0.000012 | \n",
" 0.000044 | \n",
+ " 0.000045 | \n",
" 0.000046 | \n",
- " 0.000047 | \n",
" 0.000049 | \n",
- " 0.000089 | \n",
+ " 0.000084 | \n",
"
\n",
" \n",
" Spearman (1 core) | \n",
" 10.0 | \n",
+ " 0.000661 | \n",
+ " 0.000026 | \n",
+ " 0.000634 | \n",
+ " 0.000651 | \n",
+ " 0.000657 | \n",
" 0.000660 | \n",
- " 0.000025 | \n",
- " 0.000633 | \n",
- " 0.000648 | \n",
- " 0.000654 | \n",
- " 0.000668 | \n",
- " 0.000718 | \n",
+ " 0.000731 | \n",
"
\n",
" \n",
" 10000 | \n",
" CCC (1 core) | \n",
" 10.0 | \n",
- " 0.014376 | \n",
- " 0.000156 | \n",
- " 0.014089 | \n",
- " 0.014248 | \n",
- " 0.014449 | \n",
- " 0.014489 | \n",
- " 0.014554 | \n",
+ " 0.014375 | \n",
+ " 0.000187 | \n",
+ " 0.014085 | \n",
+ " 0.014274 | \n",
+ " 0.014354 | \n",
+ " 0.014452 | \n",
+ " 0.014767 | \n",
"
\n",
" \n",
" CCC (3 cores) | \n",
- " 20.0 | \n",
- " 0.011748 | \n",
- " 0.002949 | \n",
- " 0.007434 | \n",
- " 0.008944 | \n",
- " 0.013191 | \n",
- " 0.014381 | \n",
- " 0.014911 | \n",
+ " 10.0 | \n",
+ " 0.008727 | \n",
+ " 0.001044 | \n",
+ " 0.007567 | \n",
+ " 0.008029 | \n",
+ " 0.008367 | \n",
+ " 0.009145 | \n",
+ " 0.010723 | \n",
"
\n",
" \n",
" MIC (1 core) | \n",
" 10.0 | \n",
- " 1.593811 | \n",
- " 0.005953 | \n",
- " 1.586504 | \n",
- " 1.589123 | \n",
- " 1.593626 | \n",
- " 1.597724 | \n",
- " 1.605012 | \n",
+ " 1.592554 | \n",
+ " 0.010670 | \n",
+ " 1.575866 | \n",
+ " 1.587393 | \n",
+ " 1.593111 | \n",
+ " 1.599259 | \n",
+ " 1.610753 | \n",
"
\n",
" \n",
" MICe (1 core) | \n",
" 10.0 | \n",
- " 0.572184 | \n",
- " 0.000891 | \n",
- " 0.571086 | \n",
- " 0.571555 | \n",
- " 0.572045 | \n",
- " 0.572602 | \n",
- " 0.574120 | \n",
+ " 0.572581 | \n",
+ " 0.001167 | \n",
+ " 0.570966 | \n",
+ " 0.571873 | \n",
+ " 0.572358 | \n",
+ " 0.573227 | \n",
+ " 0.574736 | \n",
"
\n",
" \n",
" Pearson (1 core) | \n",
@@ -1123,212 +1033,212 @@
" 0.000064 | \n",
" 0.000015 | \n",
" 0.000056 | \n",
- " 0.000057 | \n",
- " 0.000057 | \n",
- " 0.000060 | \n",
- " 0.000103 | \n",
+ " 0.000058 | \n",
+ " 0.000059 | \n",
+ " 0.000063 | \n",
+ " 0.000106 | \n",
"
\n",
" \n",
" Spearman (1 core) | \n",
" 10.0 | \n",
- " 0.001148 | \n",
- " 0.000021 | \n",
- " 0.001127 | \n",
- " 0.001132 | \n",
- " 0.001143 | \n",
- " 0.001154 | \n",
- " 0.001189 | \n",
+ " 0.001158 | \n",
+ " 0.000027 | \n",
+ " 0.001128 | \n",
+ " 0.001147 | \n",
+ " 0.001153 | \n",
+ " 0.001155 | \n",
+ " 0.001231 | \n",
"
\n",
" \n",
" 50000 | \n",
" CCC (1 core) | \n",
" 10.0 | \n",
- " 0.081954 | \n",
+ " 0.082006 | \n",
" 0.000460 | \n",
- " 0.081520 | \n",
- " 0.081645 | \n",
- " 0.081771 | \n",
- " 0.082033 | \n",
- " 0.082827 | \n",
+ " 0.081297 | \n",
+ " 0.081652 | \n",
+ " 0.082052 | \n",
+ " 0.082178 | \n",
+ " 0.082773 | \n",
"
\n",
" \n",
" CCC (3 cores) | \n",
- " 20.0 | \n",
- " 0.062749 | \n",
- " 0.020206 | \n",
- " 0.042135 | \n",
- " 0.042986 | \n",
- " 0.062657 | \n",
- " 0.082565 | \n",
- " 0.083035 | \n",
+ " 10.0 | \n",
+ " 0.043132 | \n",
+ " 0.000550 | \n",
+ " 0.042416 | \n",
+ " 0.042617 | \n",
+ " 0.043109 | \n",
+ " 0.043533 | \n",
+ " 0.043936 | \n",
"
\n",
" \n",
" MICe (1 core) | \n",
" 10.0 | \n",
- " 4.840202 | \n",
- " 0.005833 | \n",
- " 4.833923 | \n",
- " 4.836959 | \n",
- " 4.838884 | \n",
- " 4.841126 | \n",
- " 4.853696 | \n",
+ " 4.843016 | \n",
+ " 0.005246 | \n",
+ " 4.832381 | \n",
+ " 4.842152 | \n",
+ " 4.843082 | \n",
+ " 4.846897 | \n",
+ " 4.849092 | \n",
"
\n",
" \n",
" Pearson (1 core) | \n",
" 10.0 | \n",
- " 0.000175 | \n",
- " 0.000023 | \n",
- " 0.000162 | \n",
+ " 0.000182 | \n",
+ " 0.000026 | \n",
+ " 0.000163 | \n",
" 0.000165 | \n",
- " 0.000167 | \n",
- " 0.000174 | \n",
- " 0.000237 | \n",
+ " 0.000169 | \n",
+ " 0.000190 | \n",
+ " 0.000248 | \n",
"
\n",
" \n",
" Spearman (1 core) | \n",
" 10.0 | \n",
- " 0.006281 | \n",
- " 0.000192 | \n",
- " 0.005967 | \n",
- " 0.006173 | \n",
- " 0.006371 | \n",
- " 0.006404 | \n",
- " 0.006503 | \n",
+ " 0.006136 | \n",
+ " 0.000160 | \n",
+ " 0.005979 | \n",
+ " 0.006003 | \n",
+ " 0.006108 | \n",
+ " 0.006233 | \n",
+ " 0.006459 | \n",
"
\n",
" \n",
" 100000 | \n",
" CCC (1 core) | \n",
" 10.0 | \n",
- " 0.174698 | \n",
- " 0.000853 | \n",
- " 0.172981 | \n",
- " 0.174516 | \n",
- " 0.174820 | \n",
- " 0.175171 | \n",
- " 0.175800 | \n",
+ " 0.175137 | \n",
+ " 0.000671 | \n",
+ " 0.174232 | \n",
+ " 0.174719 | \n",
+ " 0.175010 | \n",
+ " 0.175541 | \n",
+ " 0.176207 | \n",
"
\n",
" \n",
" CCC (3 cores) | \n",
- " 20.0 | \n",
- " 0.132427 | \n",
- " 0.043216 | \n",
- " 0.089384 | \n",
- " 0.090450 | \n",
- " 0.131798 | \n",
- " 0.174557 | \n",
- " 0.175795 | \n",
+ " 10.0 | \n",
+ " 0.090907 | \n",
+ " 0.001929 | \n",
+ " 0.088514 | \n",
+ " 0.089994 | \n",
+ " 0.090318 | \n",
+ " 0.091081 | \n",
+ " 0.095571 | \n",
"
\n",
" \n",
" Pearson (1 core) | \n",
" 10.0 | \n",
- " 0.000419 | \n",
- " 0.000261 | \n",
- " 0.000310 | \n",
- " 0.000311 | \n",
- " 0.000323 | \n",
- " 0.000356 | \n",
- " 0.001154 | \n",
+ " 0.000417 | \n",
+ " 0.000249 | \n",
+ " 0.000313 | \n",
+ " 0.000318 | \n",
+ " 0.000320 | \n",
+ " 0.000336 | \n",
+ " 0.001109 | \n",
"
\n",
" \n",
" Spearman (1 core) | \n",
" 10.0 | \n",
- " 0.011976 | \n",
- " 0.000482 | \n",
- " 0.011688 | \n",
- " 0.011717 | \n",
- " 0.011878 | \n",
- " 0.011939 | \n",
- " 0.013306 | \n",
+ " 0.011882 | \n",
+ " 0.000409 | \n",
+ " 0.011642 | \n",
+ " 0.011671 | \n",
+ " 0.011746 | \n",
+ " 0.011826 | \n",
+ " 0.012993 | \n",
"
\n",
" \n",
" 1000000 | \n",
" CCC (1 core) | \n",
" 10.0 | \n",
- " 2.300074 | \n",
- " 0.059685 | \n",
- " 2.243103 | \n",
- " 2.258527 | \n",
- " 2.273946 | \n",
- " 2.339997 | \n",
- " 2.399963 | \n",
+ " 2.296490 | \n",
+ " 0.065356 | \n",
+ " 2.219242 | \n",
+ " 2.255166 | \n",
+ " 2.270925 | \n",
+ " 2.352809 | \n",
+ " 2.407563 | \n",
"
\n",
" \n",
" CCC (3 cores) | \n",
- " 20.0 | \n",
- " 1.835366 | \n",
- " 0.568365 | \n",
- " 1.263928 | \n",
- " 1.282314 | \n",
- " 1.833785 | \n",
- " 2.391098 | \n",
- " 2.400922 | \n",
+ " 10.0 | \n",
+ " 1.275980 | \n",
+ " 0.008927 | \n",
+ " 1.265975 | \n",
+ " 1.268516 | \n",
+ " 1.273530 | \n",
+ " 1.282357 | \n",
+ " 1.291811 | \n",
"
\n",
" \n",
" Pearson (1 core) | \n",
" 10.0 | \n",
- " 0.007424 | \n",
- " 0.001050 | \n",
- " 0.006337 | \n",
- " 0.006783 | \n",
- " 0.007136 | \n",
- " 0.007777 | \n",
- " 0.010026 | \n",
+ " 0.007408 | \n",
+ " 0.001242 | \n",
+ " 0.006026 | \n",
+ " 0.006245 | \n",
+ " 0.007732 | \n",
+ " 0.007757 | \n",
+ " 0.009899 | \n",
"
\n",
" \n",
" Spearman (1 core) | \n",
" 10.0 | \n",
- " 0.175983 | \n",
- " 0.002461 | \n",
- " 0.172887 | \n",
- " 0.174187 | \n",
- " 0.175113 | \n",
- " 0.178249 | \n",
- " 0.179481 | \n",
+ " 0.172611 | \n",
+ " 0.001251 | \n",
+ " 0.170362 | \n",
+ " 0.171784 | \n",
+ " 0.172625 | \n",
+ " 0.173215 | \n",
+ " 0.174503 | \n",
"
\n",
" \n",
" 10000000 | \n",
" CCC (1 core) | \n",
" 10.0 | \n",
- " 40.130216 | \n",
- " 0.064422 | \n",
- " 40.028379 | \n",
- " 40.077354 | \n",
- " 40.150630 | \n",
- " 40.173642 | \n",
- " 40.222978 | \n",
+ " 40.157600 | \n",
+ " 0.173438 | \n",
+ " 39.843292 | \n",
+ " 40.088204 | \n",
+ " 40.151353 | \n",
+ " 40.259280 | \n",
+ " 40.429066 | \n",
"
\n",
" \n",
" CCC (3 cores) | \n",
" 10.0 | \n",
- " 21.846361 | \n",
- " 0.102418 | \n",
- " 21.685791 | \n",
- " 21.766874 | \n",
- " 21.877272 | \n",
- " 21.905696 | \n",
- " 22.008292 | \n",
+ " 21.885837 | \n",
+ " 0.103896 | \n",
+ " 21.705721 | \n",
+ " 21.845108 | \n",
+ " 21.876476 | \n",
+ " 21.949155 | \n",
+ " 22.039508 | \n",
"
\n",
" \n",
" Pearson (1 core) | \n",
" 10.0 | \n",
- " 0.094118 | \n",
- " 0.000621 | \n",
- " 0.092937 | \n",
- " 0.093898 | \n",
- " 0.094109 | \n",
- " 0.094618 | \n",
- " 0.094927 | \n",
+ " 0.094267 | \n",
+ " 0.000529 | \n",
+ " 0.093734 | \n",
+ " 0.093855 | \n",
+ " 0.094105 | \n",
+ " 0.094493 | \n",
+ " 0.095369 | \n",
"
\n",
" \n",
" Spearman (1 core) | \n",
" 10.0 | \n",
- " 2.943287 | \n",
- " 0.005418 | \n",
- " 2.932472 | \n",
- " 2.940585 | \n",
- " 2.943117 | \n",
- " 2.947067 | \n",
- " 2.951497 | \n",
+ " 2.954011 | \n",
+ " 0.010732 | \n",
+ " 2.941881 | \n",
+ " 2.946117 | \n",
+ " 2.951748 | \n",
+ " 2.962198 | \n",
+ " 2.971911 | \n",
"
\n",
" \n",
"\n",
@@ -1337,103 +1247,103 @@
"text/plain": [
" count mean std min \\\n",
"data_size method \n",
- "100 CCC (1 core) 1000.0 0.000638 0.000030 0.000616 \n",
- " CCC (3 cores) 2000.0 0.000864 0.000336 0.000620 \n",
- " MIC (1 core) 1000.0 0.000725 0.000027 0.000642 \n",
- " MICe (1 core) 1000.0 0.000676 0.000027 0.000594 \n",
- " Pearson (1 core) 1000.0 0.000030 0.000003 0.000028 \n",
- " Spearman (1 core) 1000.0 0.000214 0.000012 0.000200 \n",
- "500 CCC (1 core) 10.0 0.000945 0.000049 0.000917 \n",
- " CCC (3 cores) 20.0 0.001081 0.000244 0.000916 \n",
- " MIC (1 core) 10.0 0.011626 0.000200 0.011318 \n",
- " MICe (1 core) 10.0 0.008861 0.000099 0.008698 \n",
- " Pearson (1 core) 10.0 0.000039 0.000013 0.000031 \n",
- " Spearman (1 core) 10.0 0.000272 0.000024 0.000259 \n",
- "1000 CCC (1 core) 10.0 0.001411 0.000045 0.001352 \n",
- " CCC (3 cores) 20.0 0.001423 0.000197 0.001305 \n",
- " MIC (1 core) 10.0 0.037035 0.000359 0.036555 \n",
- " MICe (1 core) 10.0 0.024683 0.000105 0.024500 \n",
- " Pearson (1 core) 10.0 0.000040 0.000018 0.000032 \n",
- " Spearman (1 core) 10.0 0.000318 0.000029 0.000294 \n",
- "5000 CCC (1 core) 10.0 0.006699 0.000153 0.006540 \n",
- " CCC (3 cores) 20.0 0.005661 0.001280 0.003849 \n",
- " MIC (1 core) 10.0 0.509760 0.001702 0.506530 \n",
- " MICe (1 core) 10.0 0.227899 0.000712 0.226766 \n",
- " Pearson (1 core) 10.0 0.000051 0.000013 0.000044 \n",
- " Spearman (1 core) 10.0 0.000660 0.000025 0.000633 \n",
- "10000 CCC (1 core) 10.0 0.014376 0.000156 0.014089 \n",
- " CCC (3 cores) 20.0 0.011748 0.002949 0.007434 \n",
- " MIC (1 core) 10.0 1.593811 0.005953 1.586504 \n",
- " MICe (1 core) 10.0 0.572184 0.000891 0.571086 \n",
+ "100 CCC (1 core) 1000.0 0.000641 0.000025 0.000623 \n",
+ " CCC (3 cores) 1000.0 0.001110 0.000416 0.000853 \n",
+ " MIC (1 core) 1000.0 0.000724 0.000026 0.000635 \n",
+ " MICe (1 core) 1000.0 0.000675 0.000022 0.000604 \n",
+ " Pearson (1 core) 1000.0 0.000031 0.000002 0.000028 \n",
+ " Spearman (1 core) 1000.0 0.000217 0.000017 0.000205 \n",
+ "500 CCC (1 core) 10.0 0.000932 0.000034 0.000911 \n",
+ " CCC (3 cores) 10.0 0.001258 0.000292 0.001080 \n",
+ " MIC (1 core) 10.0 0.011612 0.000258 0.011189 \n",
+ " MICe (1 core) 10.0 0.008890 0.000098 0.008685 \n",
+ " Pearson (1 core) 10.0 0.000041 0.000013 0.000033 \n",
+ " Spearman (1 core) 10.0 0.000273 0.000023 0.000260 \n",
+ "1000 CCC (1 core) 10.0 0.001398 0.000047 0.001332 \n",
+ " CCC (3 cores) 10.0 0.001564 0.000341 0.001332 \n",
+ " MIC (1 core) 10.0 0.037072 0.000457 0.036463 \n",
+ " MICe (1 core) 10.0 0.024851 0.000125 0.024646 \n",
+ " Pearson (1 core) 10.0 0.000040 0.000017 0.000033 \n",
+ " Spearman (1 core) 10.0 0.000319 0.000024 0.000301 \n",
+ "5000 CCC (1 core) 10.0 0.006685 0.000091 0.006585 \n",
+ " CCC (3 cores) 10.0 0.004830 0.001123 0.003883 \n",
+ " MIC (1 core) 10.0 0.510705 0.001836 0.507880 \n",
+ " MICe (1 core) 10.0 0.228000 0.000698 0.227258 \n",
+ " Pearson (1 core) 10.0 0.000050 0.000012 0.000044 \n",
+ " Spearman (1 core) 10.0 0.000661 0.000026 0.000634 \n",
+ "10000 CCC (1 core) 10.0 0.014375 0.000187 0.014085 \n",
+ " CCC (3 cores) 10.0 0.008727 0.001044 0.007567 \n",
+ " MIC (1 core) 10.0 1.592554 0.010670 1.575866 \n",
+ " MICe (1 core) 10.0 0.572581 0.001167 0.570966 \n",
" Pearson (1 core) 10.0 0.000064 0.000015 0.000056 \n",
- " Spearman (1 core) 10.0 0.001148 0.000021 0.001127 \n",
- "50000 CCC (1 core) 10.0 0.081954 0.000460 0.081520 \n",
- " CCC (3 cores) 20.0 0.062749 0.020206 0.042135 \n",
- " MICe (1 core) 10.0 4.840202 0.005833 4.833923 \n",
- " Pearson (1 core) 10.0 0.000175 0.000023 0.000162 \n",
- " Spearman (1 core) 10.0 0.006281 0.000192 0.005967 \n",
- "100000 CCC (1 core) 10.0 0.174698 0.000853 0.172981 \n",
- " CCC (3 cores) 20.0 0.132427 0.043216 0.089384 \n",
- " Pearson (1 core) 10.0 0.000419 0.000261 0.000310 \n",
- " Spearman (1 core) 10.0 0.011976 0.000482 0.011688 \n",
- "1000000 CCC (1 core) 10.0 2.300074 0.059685 2.243103 \n",
- " CCC (3 cores) 20.0 1.835366 0.568365 1.263928 \n",
- " Pearson (1 core) 10.0 0.007424 0.001050 0.006337 \n",
- " Spearman (1 core) 10.0 0.175983 0.002461 0.172887 \n",
- "10000000 CCC (1 core) 10.0 40.130216 0.064422 40.028379 \n",
- " CCC (3 cores) 10.0 21.846361 0.102418 21.685791 \n",
- " Pearson (1 core) 10.0 0.094118 0.000621 0.092937 \n",
- " Spearman (1 core) 10.0 2.943287 0.005418 2.932472 \n",
+ " Spearman (1 core) 10.0 0.001158 0.000027 0.001128 \n",
+ "50000 CCC (1 core) 10.0 0.082006 0.000460 0.081297 \n",
+ " CCC (3 cores) 10.0 0.043132 0.000550 0.042416 \n",
+ " MICe (1 core) 10.0 4.843016 0.005246 4.832381 \n",
+ " Pearson (1 core) 10.0 0.000182 0.000026 0.000163 \n",
+ " Spearman (1 core) 10.0 0.006136 0.000160 0.005979 \n",
+ "100000 CCC (1 core) 10.0 0.175137 0.000671 0.174232 \n",
+ " CCC (3 cores) 10.0 0.090907 0.001929 0.088514 \n",
+ " Pearson (1 core) 10.0 0.000417 0.000249 0.000313 \n",
+ " Spearman (1 core) 10.0 0.011882 0.000409 0.011642 \n",
+ "1000000 CCC (1 core) 10.0 2.296490 0.065356 2.219242 \n",
+ " CCC (3 cores) 10.0 1.275980 0.008927 1.265975 \n",
+ " Pearson (1 core) 10.0 0.007408 0.001242 0.006026 \n",
+ " Spearman (1 core) 10.0 0.172611 0.001251 0.170362 \n",
+ "10000000 CCC (1 core) 10.0 40.157600 0.173438 39.843292 \n",
+ " CCC (3 cores) 10.0 21.885837 0.103896 21.705721 \n",
+ " Pearson (1 core) 10.0 0.094267 0.000529 0.093734 \n",
+ " Spearman (1 core) 10.0 2.954011 0.010732 2.941881 \n",
"\n",
" 25% 50% 75% max \n",
"data_size method \n",
- "100 CCC (1 core) 0.000628 0.000632 0.000637 0.001261 \n",
- " CCC (3 cores) 0.000635 0.000870 0.000950 0.005126 \n",
- " MIC (1 core) 0.000706 0.000725 0.000744 0.000810 \n",
- " MICe (1 core) 0.000660 0.000677 0.000691 0.001160 \n",
- " Pearson (1 core) 0.000030 0.000030 0.000031 0.000090 \n",
- " Spearman (1 core) 0.000211 0.000213 0.000216 0.000489 \n",
- "500 CCC (1 core) 0.000920 0.000930 0.000945 0.001080 \n",
- " CCC (3 cores) 0.000925 0.001053 0.001110 0.001951 \n",
- " MIC (1 core) 0.011462 0.011678 0.011781 0.011859 \n",
- " MICe (1 core) 0.008783 0.008898 0.008920 0.009018 \n",
- " Pearson (1 core) 0.000033 0.000033 0.000035 0.000073 \n",
- " Spearman (1 core) 0.000261 0.000265 0.000268 0.000339 \n",
- "1000 CCC (1 core) 0.001381 0.001394 0.001442 0.001476 \n",
- " CCC (3 cores) 0.001358 0.001394 0.001403 0.002239 \n",
- " MIC (1 core) 0.036795 0.036971 0.037363 0.037545 \n",
- " MICe (1 core) 0.024657 0.024675 0.024751 0.024867 \n",
- " Pearson (1 core) 0.000034 0.000034 0.000035 0.000090 \n",
- " Spearman (1 core) 0.000302 0.000307 0.000320 0.000391 \n",
- "5000 CCC (1 core) 0.006617 0.006644 0.006757 0.007074 \n",
- " CCC (3 cores) 0.004153 0.006480 0.006716 0.006952 \n",
- " MIC (1 core) 0.508632 0.509907 0.511210 0.511696 \n",
- " MICe (1 core) 0.227390 0.227958 0.228420 0.228829 \n",
- " Pearson (1 core) 0.000046 0.000047 0.000049 0.000089 \n",
- " Spearman (1 core) 0.000648 0.000654 0.000668 0.000718 \n",
- "10000 CCC (1 core) 0.014248 0.014449 0.014489 0.014554 \n",
- " CCC (3 cores) 0.008944 0.013191 0.014381 0.014911 \n",
- " MIC (1 core) 1.589123 1.593626 1.597724 1.605012 \n",
- " MICe (1 core) 0.571555 0.572045 0.572602 0.574120 \n",
- " Pearson (1 core) 0.000057 0.000057 0.000060 0.000103 \n",
- " Spearman (1 core) 0.001132 0.001143 0.001154 0.001189 \n",
- "50000 CCC (1 core) 0.081645 0.081771 0.082033 0.082827 \n",
- " CCC (3 cores) 0.042986 0.062657 0.082565 0.083035 \n",
- " MICe (1 core) 4.836959 4.838884 4.841126 4.853696 \n",
- " Pearson (1 core) 0.000165 0.000167 0.000174 0.000237 \n",
- " Spearman (1 core) 0.006173 0.006371 0.006404 0.006503 \n",
- "100000 CCC (1 core) 0.174516 0.174820 0.175171 0.175800 \n",
- " CCC (3 cores) 0.090450 0.131798 0.174557 0.175795 \n",
- " Pearson (1 core) 0.000311 0.000323 0.000356 0.001154 \n",
- " Spearman (1 core) 0.011717 0.011878 0.011939 0.013306 \n",
- "1000000 CCC (1 core) 2.258527 2.273946 2.339997 2.399963 \n",
- " CCC (3 cores) 1.282314 1.833785 2.391098 2.400922 \n",
- " Pearson (1 core) 0.006783 0.007136 0.007777 0.010026 \n",
- " Spearman (1 core) 0.174187 0.175113 0.178249 0.179481 \n",
- "10000000 CCC (1 core) 40.077354 40.150630 40.173642 40.222978 \n",
- " CCC (3 cores) 21.766874 21.877272 21.905696 22.008292 \n",
- " Pearson (1 core) 0.093898 0.094109 0.094618 0.094927 \n",
- " Spearman (1 core) 2.940585 2.943117 2.947067 2.951497 "
+ "100 CCC (1 core) 0.000631 0.000635 0.000640 0.001048 \n",
+ " CCC (3 cores) 0.000913 0.000944 0.001109 0.004993 \n",
+ " MIC (1 core) 0.000707 0.000723 0.000741 0.000879 \n",
+ " MICe (1 core) 0.000659 0.000676 0.000691 0.000740 \n",
+ " Pearson (1 core) 0.000030 0.000031 0.000031 0.000098 \n",
+ " Spearman (1 core) 0.000213 0.000215 0.000218 0.000483 \n",
+ "500 CCC (1 core) 0.000918 0.000921 0.000927 0.001028 \n",
+ " CCC (3 cores) 0.001103 0.001132 0.001268 0.002005 \n",
+ " MIC (1 core) 0.011426 0.011671 0.011797 0.011964 \n",
+ " MICe (1 core) 0.008851 0.008900 0.008963 0.008996 \n",
+ " Pearson (1 core) 0.000034 0.000035 0.000042 0.000075 \n",
+ " Spearman (1 core) 0.000264 0.000266 0.000268 0.000336 \n",
+ "1000 CCC (1 core) 0.001362 0.001389 0.001438 0.001465 \n",
+ " CCC (3 cores) 0.001383 0.001409 0.001685 0.002411 \n",
+ " MIC (1 core) 0.036848 0.036995 0.037238 0.037937 \n",
+ " MICe (1 core) 0.024754 0.024871 0.024943 0.025019 \n",
+ " Pearson (1 core) 0.000034 0.000035 0.000035 0.000087 \n",
+ " Spearman (1 core) 0.000304 0.000310 0.000321 0.000376 \n",
+ "5000 CCC (1 core) 0.006639 0.006668 0.006692 0.006896 \n",
+ " CCC (3 cores) 0.004018 0.004404 0.005185 0.007427 \n",
+ " MIC (1 core) 0.509280 0.510705 0.512287 0.513345 \n",
+ " MICe (1 core) 0.227605 0.227923 0.228074 0.229758 \n",
+ " Pearson (1 core) 0.000045 0.000046 0.000049 0.000084 \n",
+ " Spearman (1 core) 0.000651 0.000657 0.000660 0.000731 \n",
+ "10000 CCC (1 core) 0.014274 0.014354 0.014452 0.014767 \n",
+ " CCC (3 cores) 0.008029 0.008367 0.009145 0.010723 \n",
+ " MIC (1 core) 1.587393 1.593111 1.599259 1.610753 \n",
+ " MICe (1 core) 0.571873 0.572358 0.573227 0.574736 \n",
+ " Pearson (1 core) 0.000058 0.000059 0.000063 0.000106 \n",
+ " Spearman (1 core) 0.001147 0.001153 0.001155 0.001231 \n",
+ "50000 CCC (1 core) 0.081652 0.082052 0.082178 0.082773 \n",
+ " CCC (3 cores) 0.042617 0.043109 0.043533 0.043936 \n",
+ " MICe (1 core) 4.842152 4.843082 4.846897 4.849092 \n",
+ " Pearson (1 core) 0.000165 0.000169 0.000190 0.000248 \n",
+ " Spearman (1 core) 0.006003 0.006108 0.006233 0.006459 \n",
+ "100000 CCC (1 core) 0.174719 0.175010 0.175541 0.176207 \n",
+ " CCC (3 cores) 0.089994 0.090318 0.091081 0.095571 \n",
+ " Pearson (1 core) 0.000318 0.000320 0.000336 0.001109 \n",
+ " Spearman (1 core) 0.011671 0.011746 0.011826 0.012993 \n",
+ "1000000 CCC (1 core) 2.255166 2.270925 2.352809 2.407563 \n",
+ " CCC (3 cores) 1.268516 1.273530 1.282357 1.291811 \n",
+ " Pearson (1 core) 0.006245 0.007732 0.007757 0.009899 \n",
+ " Spearman (1 core) 0.171784 0.172625 0.173215 0.174503 \n",
+ "10000000 CCC (1 core) 40.088204 40.151353 40.259280 40.429066 \n",
+ " CCC (3 cores) 21.845108 21.876476 21.949155 22.039508 \n",
+ " Pearson (1 core) 0.093855 0.094105 0.094493 0.095369 \n",
+ " Spearman (1 core) 2.946117 2.951748 2.962198 2.971911 "
]
},
"metadata": {},
@@ -1452,6 +1362,18 @@
"display(run_numbers)"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "ffb6a620-e832-4b8e-bfe2-e211a381000e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# this is necessary to make sure we did not mix results when running the time test notebooks\n",
+ "# that could happen if the notebooks are run separately without running them all together\n",
+ "assert run_numbers[\"count\"].unique().shape[0] == 2"
+ ]
+ },
{
"cell_type": "markdown",
"id": "772f2cd8-22b9-4106-93e2-1c8063370356",
@@ -1474,12 +1396,6 @@
"execution_count": 16,
"id": "3b4ffedd-661b-40da-b323-4d29f38c3b72",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.667314Z",
- "iopub.status.busy": "2023-09-11T14:41:55.667241Z",
- "iopub.status.idle": "2023-09-11T14:41:55.668841Z",
- "shell.execute_reply": "2023-09-11T14:41:55.668704Z"
- },
"papermill": {
"duration": 0.004783,
"end_time": "2023-09-11T14:41:55.669379",
@@ -1499,12 +1415,6 @@
"execution_count": 17,
"id": "cc263e22-bbc0-4d20-953f-ec6fd0a624b8",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.674502Z",
- "iopub.status.busy": "2023-09-11T14:41:55.674393Z",
- "iopub.status.idle": "2023-09-11T14:41:55.675878Z",
- "shell.execute_reply": "2023-09-11T14:41:55.675755Z"
- },
"papermill": {
"duration": 0.004689,
"end_time": "2023-09-11T14:41:55.676431",
@@ -1544,12 +1454,6 @@
"execution_count": 18,
"id": "e3c79816-6703-4236-b55a-c6dc38d4d600",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.681560Z",
- "iopub.status.busy": "2023-09-11T14:41:55.681458Z",
- "iopub.status.idle": "2023-09-11T14:41:55.683376Z",
- "shell.execute_reply": "2023-09-11T14:41:55.683254Z"
- },
"papermill": {
"duration": 0.005063,
"end_time": "2023-09-11T14:41:55.683918",
@@ -1594,12 +1498,6 @@
"execution_count": 19,
"id": "59249512-0a19-4868-b5a0-5dc4e271c8af",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.689211Z",
- "iopub.status.busy": "2023-09-11T14:41:55.689116Z",
- "iopub.status.idle": "2023-09-11T14:41:55.692291Z",
- "shell.execute_reply": "2023-09-11T14:41:55.692134Z"
- },
"papermill": {
"duration": 0.006262,
"end_time": "2023-09-11T14:41:55.692678",
@@ -1662,12 +1560,6 @@
"execution_count": 20,
"id": "09151d37-4dd2-4c1f-ab4a-94b4d3e79018",
"metadata": {
- "execution": {
- "iopub.execute_input": "2023-09-11T14:41:55.707659Z",
- "iopub.status.busy": "2023-09-11T14:41:55.707547Z",
- "iopub.status.idle": "2023-09-11T14:41:56.365293Z",
- "shell.execute_reply": "2023-09-11T14:41:56.365106Z"
- },
"papermill": {
"duration": 0.661136,
"end_time": "2023-09-11T14:41:56.366016",
@@ -1680,7 +1572,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo0AAAFXCAYAAADH4HSZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9s0lEQVR4nO3dd5icZfX/8fdnS3qnQwihhZIAoRelg4pIEUEFpCgKFlC+gqIiGFRUFBVEOkovP4pI7xABkQ6BJKSRhJDeNmWzfeb8/rjvSSaT2dnd7MzOzu55XddkZp56nmdms2fvKjPDOeecc865XMqKHYBzzjnnnOv8PGl0zjnnnHMt8qTROeecc861yJNG55xzzjnXIk8anXPOOedcizxpdM4555xzLaoodgD5Isl8+CDnnHNFpGIH4FwheUmjc84555xrkSeNzjnnnHOuRZ40Ouecc865FnnS6JxzzjnnWuRJo3POOeeca5Enjc4555xzrkWeNDrnnHPOuRZ50uicc84551rkSaNzzrluwyeBcG79FS1plPSwJJN0SNqyfSW9LalO0kRJRxUrPuecc13HjCWreHzifO57fw6PT5zPjCWrih2ScyWnKEmjpNOAvhnLNgCeAv4L7AHcCTwsafuOj9A551xXMWPJKl6fVcXK+iYAVtY38fqsKk8cnWujDk8aJW0B/Bb4dsaqU4EVwPlmNtHMfg+8CZzTwSE655zrQiYsWNmm5c657IpR0ngL8Dszm5WxfB/gJVu7wckLwL4dFplzzrkuxcxWlzBmWlnf5G0cnWuDDk0aJZ0DVJrZjVlWbwwszFi2KC7PPM6Y2B5y9aMA4TrnnCtxkujfsyLruv49K5DUwRE5V7o6LGmUNAz4FetWS6/epLXHMrMxZqb0R16CdM451+WM3KR/m5Y757LryJLGPYBNgWmSmiSl6gtekPQPYAHrlipuxLqlj84551yrbb1BX/pUlq9+379nBfsNG8zWG/TNsZdzLlP2MvvCeAHYNWPZh4SSx2eBrwD/l7H+MOCNwofmnHOuq0okjdrGBACfH7ERQ/r2LHJEzpWmDksazWwlMD59WWxLMsPM5ki6Gxgj6SrgRuBYQieY5qqznXPOuRYtr2vECG2gBvbuUexwnCtZnWZGGDNbAnwROBB4HzgTOMHMphYxLOeccyVuWW0jAAN7VVJe5k3gnVtfHVk9vY7MDixm9jqwZ5HCcc451wVVxaRxUJ/KIkfiXGnrNCWNzjnnXCFU1TQAMLi3J43OtYcnjc4557osM1td0uhJo3Pt40mjc865LmtVQ4KmZJj/YZB3gnGuXTxpdM4512WlShn79iinZ4X/ynOuPfwnyDnnXJdVVRvaMw7yqmnn2s2TRuecc13Wshpvz+hcvnjS6Jxzrsta0wnG2zM6116eNDrnnOuS6psS1MTpA7162rn286TROedcl5QqZawsF317lBc5GudKnyeNzjnnuqSqtPaMkk8f6Fx7edLonHOuS0rNOe3jMzqXH540Ouec65JSw+14z2nn8sOTRuecc11OImmsqGsCPGl0Ll88aXTOOdflLK9rxIAywYBenjQ6lw+eNDrnnOtyUj2nB/SqpLzMO8E4lw+eNDrnnOtyqmq8PaNz+eZJo3POuS5nWa1PH+hcvnnS6JxzrksxM58+0LkC8KTROedcl1LdkKApaYBPH+hcPnnS6JxzrktJtWfs26OcHhX+a865fPGfJuecc12Kt2d0rjA8aXTOOdeleHtG5wqjQ5NGSZdJmiKpVtICSXdL2jSuO0SSZTze78j4nHPOlb5U0jioj5c0OpdPFR18vknAOcAMYGPgz8DtwOfTttks7XVjx4XmnHOu1NU1JqhtTABePe1cvnVo0mhm96a9nSnpj8C9GdvM78iYnHPOdR2p9ow9ykWfyvIiR+Nc11K0No2SBgKnAP/NWD5T0ixJ90kaVpzonHPOlaLVVdO9eyD59IHO5VOHJ42STpVUDSwDtgZOjqvmAWcBxwFnEKqvX5LUO8sxxmS2f+yY6J1zznVmVbU+faBzhSKzjs23JPUHNgW2BC4D5pvZSc1sNws428weaMVxraOvxTnnXOfyxEfzWVHXxH7DBrP1Bn07+vRetOm6tI7uCIOZrQRWAlMlTQZmS9rZzCZmbidpGjC8o2N0zjlXepqSxsq6JgAG9/HhdpzLt2KP05j6qyyxzopQLb0N8EmHRuScc64kLa9txIAywYBeHV4m4lyX12E/VZIqgTHAv4GFhOrp3wDvEkodzwbmAxOAQcCvgGrgyY6K0TnnXOlKtWcc2KuSMu8E41zedWRJowE7AY8CU4C7gWnAl8wsCVQCfyEkjU8CTcDhZlbdgTE655wrUT59oHOF1eEdYQrFO8I451z39tyUhSxe1cCeQwcxYqN+xQjBizddl1bsNo3OOedcu5nZ6pLGQV7S6FxBeNLonHOu5K2sb6IpGWqbPGns+iSdKampQMc+JI4BPbQQxy9lnjQ655wrealSxn49yulR7r/auhJJTZLOLHYczpNG55xzXUBq+kAfn9G5wvGk0TnnXMmr8vaMRSdprKR/SPqtpIWSlkm6XFKZpEslLZC0SNLlaftUxKmBZ0iqkzRB0jlp62cC5cCt2aYNlvQZSe9KqpH0lqQ9M9bvJ+llSbWSqiTdI2njjG3OkzQ7HuMZYFgh7k9X4Emjc865kresxuec7iROJAyh91ngx8AvgMeBfsCBwIXALyQdFbe/BTgBOIcwLN+vgSsknRXX702YAOR8YLP4SCkDfg/8CNgDqALul1QBIGlT4FlgNrAPcAwwCngodQBJxwF/JQz5Nxq4H/hTHu5Dl+RD5jvnnCtptY0JapuSgCeNncAMM7sovp4i6QJgSzP7YtqyHwOHS5oEnA7sbGaTUvtL2gE4D/iHmS1SGKh9uZnNzziXgPPN7F0ASZcC/wO2BSYDPwBWAGeaWUPc5jTgfUkHmdnLwE+A/2dmf0mLbyfggvzdkq7DSxqdc86VtFQnmB7lZfSuLC9yNN3euIz384EPsizbGNiLkPi9Lak69SCUTm7finNZxvnmxOdN4vNI4PVUwghgZuOA5XEdwM7AaxnHfbUV5+6WvKTROedcSatKmwlGPn1gsTVmvLdmlpWxpuDqAKAmyzYtSZpZIss+ZVmWZbJWbOMyeEmjc865klaVas/Yx6umS8w78XmYmU3LeHyctl0DoTNMW00A9pe0uku9pN2AgXEdwETgMxn7Zb53kSeNzjnnSprPBFOazGwa8E/gZkmnSdpO0m6SviXporRNZwCHStpc0oZtOMXfgQHAbZJGSfoscCfwqpm9Erf5M/A1ST+StL2kbwKntf/quiZPGp1zzpWspkSSFfVhYpAhvX2MxhJ0NqH38sWEUr8XgDOA6WnbXADsSUgeF7X2wGa2APgcMBR4i9CLezzwlbRtHo7H/ymh7eWpwEXrHMwBILOuUZUvybrKtTjnnGudxavqeW7KIsoEJ+22BWXFbdPoDSpdl+Yljc4550pWetV0kRNG57o8Txqdc86VrDU9p71q2rlC86TROedcyaqq8U4wznUUTxqdc86VpKQZy+rWjNHonCssTxqdc86VpOr6JhLJ0AHSSxqdKzxPGp1zzpWkVHvGfj0rqCz3X2fOFZr/lDnnnCtJqfaMXjXtXMfwpNE551xJqqqN0wd60uhch+jQpFHSZZKmSKqVtEDS3ZI2TVu/r6S3JdVJmijpqI6MzznnXOlYVusljc51pI4uaZwEnAPsBBwDDANuB5C0AfAU8F9gD8L8kA9L2r6DY3TOOdfJ1TYmqGtKAjCoj4/RWKok7SdpvFQ6I7NL2lLSbEn9ih1LR+vQpNHM7jWzl8xsppm9CfwR+ExcfSqwAjjfzCaa2e+BNwlJpnPOObdaqhNMz4oyeld4S6v1JWkbSXdImhdrASdJulLSJmnb9JP0e0nTYk3gJ5LulbRr2jaSdLakdyTVSFoo6QVJx7YQwm+BP6bmAZZ0kKQnJS2SZJKGF+TC28HMPgWeBX5U7Fg6WtF+0iQNBE4hlCwC7AO8lDGB9AvAvh0dm3POuc5tWc2a9owlVEjVqUjaCXgbGAScBOwAfBvYAPhu3KYP8B9C7eAFcZtjCDWHl6cd7jrgCuAWYDfgAOA+4Ooc5x8B7A88lLa4b4zpF+28vPUiqWcrN70L+E4plZDmQ0VHn1DSqcCNhC/GG8AX46qNgfcyNl8UlzvnnHOrVdV27Zlg7n1vdtnJuw9NFvg01wJTgePSCmxmAa9KGhTfXwiMALYzswVp+36Q2kbSQYQk82gzezJtm2mSHshx/hOBl81sVWqBmT0FPNWWEkZJGwN/JeQTFcA7wClmNjcmvVfHc1UQmsF938wWx31vIxSgLQS+SShBPFnSEcAfgJHAp8Bfzez6tNP+B9gQ2JtQK9otFKOk8VFgd+BwoJGQQAK0OluXNCYWW69+FCBO55xznVRXnXP63vdmn37ve7MnA4l735s9+d73Zp9eiPNI2hA4BPhLRg0fAGa2LL48CbgrI2HMts2kjIQxc5tsDgDebUvczfgXsCUhadyT0CciVSj2Z+AgQunowYS+FLdl7H8CIQfZH7hE0g6E0s9rCUnjj4HLJH0ltYOZJYBxrGli1y10eEmjma0EVgJTJU0GZkvaGVjAuqWKGxGy/8xjjAHGpC/zxNE557qHxkSSlfVNQNfqOR0TxNuB1O+z7YHb731vNifvPvSOPJ9uW0KiNLmF7bYD/tGKbVo6TjbDgKfXY7/VJB1KSBSHpyW2U+K6/sBZwJfM7NW47EzgI0kjzGxK3H4ucGFau8p/Ateb2a1x/XRJVwHfYe2q9PnAVu2Jv9QUu/VwqnQxQSjePSRj/WGEKmznnHMOgOVxvulyif69Orzso5AuJiSMqd+Niu8vLlpEhdULqG/nMUYBk7OVhALbAJXA66kFZjYJWAbsmLbd+xmlrbsA50uqTj2AS+Px0tUBvdsZf0npsKRRUqWkyyXtLWkrSZ8lFCG/S2hTcTcwUNJVknaSdBGhE8yNOQ7rnHOum0nNBDOodwVlXaQfwr3vzS4jtB3MvCABI+L6fPo4Pu/QwnbT8rRNNksInXDaI5VYN7euNWoy3vcD/gSMTnuMAo7M2G4wsLiV5+gSOrKk0QjjMz5KKDq+m/BF+5KZJc1sCaE9woHA+8CZwAlmNrUDY3TOOdfJrekE03XaM8ZOL1NYNwEyYEq+O8XEjiBjCSVq6yRXcYQTgAeBU2Nnk1zb7JhtQo60bbL5gLVL/NbH+HjubJ1mPwaagP3S4tmRkKhOynHMccAIM5uW8fgkY7sd47bdRoeV65tZE6Gxaa5tXie0TXDOOeeyWtZ1pw+8nDVtGpX2fHmundrhXOBV4FlJVxAKcjYHvkXoRf1r4Ergy8D/JP2cMMpJL+A4Qm3gMWb2H0m3APdLugR4EVhF6IByCetW66a8EM+xWhwwe7sYB8DOsZf2NDOrzjyAmb0o6X3gwVhDuYjQOeUlM5sV2ydeI+ksQonidcBTae0Zs/kT8F9JlxGGDSqL19rDzG6IcW5G6HwzNsdxupxit2l0zjnnWi1ptmb6wD5dK2mMnV3OIDTZIj6fUYBOMACY2QTCkDELCLV/k4BbgaXADXGbVPL3IPB7QsneE8DOwM/TDnc28BPgdEJfhNcJk3b8MEcIjwAbSdolbdlehMT0ifj+ifh+rxzHOYHQKeUZQpO3Mwmjs0AYW/JV4HHgZWA24R43y8zeAT5HGOXlXeCVuM/MtM1OBJ42s3U663ZlytLTviRJyjZqgHPOuS5keV0jT34U+jycuOvmVJZ3qrKPvDWw7KBxGosulkxuYWbfLXYsrSWpjJA8n53qld1ddKqfNueccy6XVCeY/j0rOlvCmFfdIWGM/gLMLLGZVTYFru1uCSMUYZxG55xzbn1Vdd32jN1SrP7+Q7HjaAszm0sY+Lvb6bp/pjnnnOtyVrdn9KTRuQ7XqpJGSUMIjT4PJfSC6k3oofQ28LiZvVKwCJ1zzjnAzNYMt9On6wy341ypyFnSKGkTSTcDc4BfxO1fBR4jjCf1GUJX/YmSTix0sM4557qv2qYk9U2hqZ+XNDrX8VoqaRwP/D/gADN7L9sGcUylk4BLJW1pZn/Nc4zOOeccy2pCe8ZeFWX0riwvcjTOdT8tJY17mtmsXBvEwTZvlXQbsEW+AnPOOefSrZkJxksZnSuGnEljSwljxrZGGDTTOeecy7uq1Z1gvD2jc8XQ6t7TknaTNDLt/RclPSBpjCQfusc551xBVXXRmWC6M0n7SRpfYuM0NkvSvvF6uuToNG25qBuBXQAkDSVMKdQP+A7w2/yH5pxzzgWNiSTV9U2Ad4LJJ0nbSLpD0jxJtZImSbpS0iZp2/ST9HtJ0yTVSfpE0r2Sdk3bRpLOlvSOpBpJCyW9IOnYFkL4LfDH1JRukr4Xk65VkpZIekzS9oW5+vwzszeAhcDJxY6lENqSNO5AmP8RwjyPb5nZUYR5Jr+W78Ccc865lNT4jOVlol9Pr9zKB0k7EYbOG0To0LoD8G1gA+C7cZs+wH+AYwjzOO8QX08CLk873HXAFcAtwG7AAcB9wNU5zj8C2B94KG3xbOBCYFfCMH9NhHmjO4Sknnk4zF3AOXk4TqfTlqSxB1AXXx8CPBVfTyFMqeOcc84VxOpOML0qKesaNZk5Df/5Ex1RvXktMBU4zsxeNbNZ8fmbrEn2LgRGAIeb2SNm9omZfWBmlwGnAUg6iJBknmpm15vZVDObZmY3A7vnOP+JwMtxVhgAzOwxM3vazD42sw+AS4ERkjZs7iCSNpZ0t6QqSSsljZW0eVzXR9LNaevuTz+WpNtiSeuVkpYAt8XlR0h6O5a+TpH0vbR9esVjLkwrnT0+LaQngQPTS2u7irZ8KScDJ0oaBhwJPB+XbwZU5Tsw55xzLmVZN2nPOPznT5w+/OdPTAYSw3/+xOThP3/i9EKcJyZOhwB/SVUNpzOzZfHlScBdZraghW0mmdmTObbJ5gDg3Rwx9gbOJJRqLslxnH8BWwJfBPYE7mRNR98/AwcRSkcPBoYRE8M0JwAilHpeImkHQunntcBI4MfAZZK+Erf/IbAXcDSwM/B/wIrUwcxsPjA3Xl+X0pYy/suA+4E/As+a2dtx+edYU23tnHPO5V13mHM6Joi3A6kkbnvg9uE/f4KZvz/6jjyfbltCojS5he22A/7Rim1aOk42w4CnMxdKOpBQm9mHUBL6hWyJbdz2UEKiODwtsZ0S1/UHzgK+ZGavxmVnAh9JGmFmU+L2c4EL09pV/hO43sxujeunS7qK0IfjIUKC+o6ZvRXXz8gS2nxgq9bchFLS6pJGM3uE8AHvSciuU14AfpLnuJxzzjkAkmarSxq7+BiNFxMSxlT9u+L7i4sWUWH1AuqzLH8bGA0cCEwE7s4xSssoYHK2klDCtMeVwOupBWY2CVgG7Ji23fsZSekuwPmSqlMPQjX5NnH9ncBJsfr6d5KyVcHXEaZc7lLa1GbCzBaY2ftmlkxb9j8zm5j/0JxzzjlYWddE0kIG1VWTxtiGcQRrEsYUASMK0Mbx4/i8QwvbTcvTNtksIXTCWYuZ1cY2kf8ldLTdjVCrmU0qsW5uXWvUZLzvB/yJkLimHqMITfMwszeBrQntPrcCXpN0fsYxBgOLW3n+kpGzelrSTa09kJmd3f5wnHPOubUtjVXT/XtWUFHWJYe/Y+bvj04O//kTUwhV0unJjgFTZ/7+6GT2PdePmS2WNJZQonZ/ZvWvpIFmtpwwvN4Fkn5lZgtzbHOupKPM7KlmtsnmA9Yu8WuOgEQz68YDO0raODM+QmLcBOwHPBvj2ZGQqE7Kcb5xwAgzm9bcBma2lFDieKeknwLfAq6K56gklEqOy3lVJailNo2ZYyPtQSjqTbVdGAE0kqMhq3POOdce3aRqGsIQNqk2jUp7vjzXTu1wLvAq8KykKwglhpsTEqBZwK+BK4EvA/+T9HNCH4ZewHHAvsAxZvYfSbcA90u6BHgRWEXogHIJa6p1M70Qz7GapMsICd5sYCPgImAR8L9sBzCzFyW9DzwoKbXtZ4CXzGxWbJ94jaSzCCWK1wFPpbVnzOZPwH9jLPcRamX3BXqY2Q2S/i/G9368F58jtqOM9ozX3+Vyo5x/spnZoakHofHnG8AwM9vdzHYnFMu+Djxc+FCdc851R1U13aPndOzscgah8wfx+YwCdIIBwMwmAHsDC4C7CaVvtwJLgRviNqnk70Hg94SSvScIvYZ/nna4swn9G04n5AqvA6cSeho35xFgI0m7pC3bBLiXkIQ9AiSBI81sRZb9U04gdDx5hpConUko0IIwtuSrhLEeXyYke2fkOBZm9g4hETw8Hu+VuM/MuMkqQjI8DhhLuF/nph3iJOAeM2vKdZ5SpGY6JK27oTQTODaOm5S+fDTwqJkNy3t0bSCpuc5VzjnnSpSZ8a8P59GQSHLIthuy2YBexQ4pl7wNIDn850+U5btKujOKJZNbmNl3ix1LPkjqR0j2P2Nm04sdT761pXHIxoQBvjNVAs0Oupki6WJJ78epgWZL+lu8uan1h0iyjMf7bYjPOedcF1PbmKAhEXKnblA9vVp3SBijvwAzpS4zYvswwvA9XS5hhLaN0/gycK2kU8zsYwBJ2wJ/i+tacgBhjMd3CMXPNwH9gW9mbLdZ2utGnHPOdVupmWB6V5TRu7K8yNG4fIvV338odhz5EkeT6bIjyrQlaTwb+DcwRdJiQgPdjQi9n1qce9rM0sd2nByLpG/Mst38NsTknHOuC1s9fWCfbBVdzrmO1Oqk0cxmAXtIOgLYidB2Y4KZvbCe596QMMDmWmLbyTLgNeCn8bzOOee6odXTB3ajqmnnOqu2lDQCYGbPs2be6fUiaSBhEvR/pi2eR5ju5x1gCKFn0kuSRplZbcb+Y4BftScG55xznV9VTdefPtC5UtHq3tOwug3jYYQ2iWt1ojGzX2fdad1j9CR01zfgqOa6pMc5I2cBZ5vZA604rveeds65LqQhkeShD+YCcPROmzCgV6dPHLtKZw7nsmp1SaOkbxDGb6ojjOmUnqEZGQN0NnOMCsJAmf2Bw3ONYWRmKyVNA4a3NkbnnHNdR6pquqJM9O/Z5oox51yeteWn8DLCyPC/NLPmpvNplqQy4A5gO+BgM6tuYfvehFHkP2nruZxzzpW+9Jlgus6ILM6VrrYkjZsCN69PwhjdBBwCfBHoIWnTuHyRmSUknU0Y0X0CYV7IXwHVwJPreT7nnHMlzNszOte5tGVw7xeA3dtxrrMIYzC+R+j0knpsGddXEgb5nEBIFJsIVdg5SySdc851TVXdZ87pbkXS05JOKnYcbSHp+ji3dbfWlqTxTuAKST+Ks7cckP5oaWczUzOPmXH9tWa2nZn1MrNNzOwEM5u2ntflnHOuhCXNWF6XGm7Hx2gsBElj4+xrJ2csHyopIcnSlo2RNDZju20k3SFpnqRaSZMkXSlpkxzn/CyhmdpDacuukTROUpOk2/J1fXl2BfCT9JnsuqO2JI3/j9DG8K/Ai4QJwFOPV/IfmnPOue5qRV0TSQvdkQd6SWMhzQFOy1h2KjA3106SdgLeJjQnOwnYAfg2sAGQax7p7wN3m1n6NIlJ4DraOZzf+pBULqnFqYZiAddE4KsFD6oTa0vSuHWOxzb5D80551x3VVUb2jP271VBRVn36wTz2Mw/teX3c3s8BBwkaeO0ZacC97Sw37XAVOA4M3vVzGbF528CV2fbQVIlcBwZfRXM7EdmdiOhX0OrSDpF0gRJ9ZI+kXR+2rrPSfogrpuaXpIqaXgsXT1R0juEEWG2l9RH0rWSFklaJukxScMyTvskcGJrY+yKWv2lNLNPcj0KGaRzzrnupaqme84E89jMP53+2Mw/TQYSj8380+THZv7p9AKfsgp4Fvg6gKTdCGMxP9fcDpI2JHRs/Uu2AZLNbFkzu+4G9ALGtSdgSZ8jTA5yIzCKkOQujuuGAY8C/wJ2ISSwd0jaO+MwlwEXASOB2cANwLbAUcC+wCLg0TjyS8o7wAHqxl352/SXjKQRkm6R9D9Jr0m6WdL2hQrOOedc91RV2/3aM8YE8XYg9Xt1e+D2Dkgc7wK+EV9/gzCecrPjKBOSKwGT23ieYUCVmdW1OcK1XQxcZ2Z/M7OpsYTzrrjue8C7ZjbGzKaY2d8Jpan/l3GM35nZ82Y2hTCt8VeBr5rZ22Y2GTiHcP/3SdtnPjAwPrqlVieNko4EPiT0oH4deBPYA/hQ0uGFCc8551x3Y2Ysq+2Ww+1cTJgsI1WSpfj+4gKf93Fgu9hO8WRCElkIvYD6PBxnFPByM+t2JOQo6f4Xl6d7L+31SKAHMFdStaRqQglsarzolFSy23t9gu4K2jJO4++A683s/PSFkq4Gfs/a2bhzzjm3XmoaEzQkQq1ndxluJ7ZhHJFllYARj838U9kxw3+SzLK+3cysQdKDhPGUq83sLUmH5Njl4/i8A/B+G061hNBxpr1SyXRz61qjJu11P2AlsGeW7RakvR4cz7uklefoctpSPT0KuD7L8usI7Qacc865dktVTfeuLKdXZYsdW7uEmBBOYd1kyIAphUoY09wFfBa4u6UNzWwxMBY4P1v7PknNVd9+APSRtGUz61trPHBwM+smAftlLNs/Lm/OOGAAUGlm0zIeK9O22xGYZGYN6xt4qWtL0riSNQNxp9sKWJGfcJxzznV3y7ppJxjgctYuRUtVVV9e6BOb2cvARsAfWrnLuYQk6llJR8ReyQdIugX4UTPnmAd8BHwmfbmk7SSNBoYAQySNlrRdjnP/Dvi+pPPivvtJOjWuux7YM44rOULSucBXaKZHd4xrEqHjzAOx5/XWkg6OvakHpW16AEUYFqgzaUvS+DBwk6TPx67pfSR9gdDj6F+FCc8551x3U9U92zNyzPCf3AGcQRjKhvh8RlxecGa22MwaW7ntBGBvQvXt3YSSvFuBpYS8oDm3EcZ1THcLoY3hMfHxXlzW3LmfJnRUOZcwduJ9hPEhiaO5HE9IFMcD5wPfNLM3WrikU4Fn4jWkrqWM2I4xjuX4ZUJHpW5LWXrLZ98wjIJ+K+GDSN/pQeCsYk/3Jylbz3/nnHMl5tEJ81jVkOAzw4cwbHCfYofTFnkbiqWQbRiLKVZdTwL2NbNZxY6nteJYj2eZ2RHFjqWYWt0RJiaFJ0naFtg5Lp5gZtMLEplzzrlup6EpyaqGBACD++R/uJ1k0igrgcHCu2LCCGBmyyV9GxgKlEzSSPiDIGu1e3fSlt7TAJjZx6zpOeWcc87lzbLYCaaiTPTrkb9OMA+88ynXvDiNWUtrGL5BH847bHu+ssfQvB3ftZ6ZPVHsGNrKzFqaIadbaMs4jfdL+kWW5T+T9P/yG5ZzzrnuKNWecVDvSvI18cZD787mJw9+wKylYZSVmUtquOCBcTz07uy8HN+57qItHWEOJmO+yOgp4KD8hOOcc647WzMTTP46wfz9pWnrLFMzy51zzWtL0jgQyNbZpYYw4KVzzjnXLquTxjy1Z0wmjRmLV62z3IAZi1eRTHoHSudaqy1J48fAkVmWHwnMyE84zjnnuqtE0lhRl9+SxrIyMXyDdXtgC9h6w74l0SnGuc6iLUnjdcAVkv5P0ihJIyX9mDAQ6HWFCc8551x3saKukaSFhG5gr/xVT39h1KZrvU+Nnn3uobnGj3bOZWrLkDvXStqYMDL9lXFxPfBnM7umEME555zrPlJV0wN6VVCexxLApatC55o+PcqpaUgwfMO+nHvodt572rk2atOQO2b2K0lXACPjoolmtm5jEeecc66N1nSCyd/4jHWNCZ76cD4AV564G18YualXSReZpKeBf5jZA8WOJR8kPQXcZmZdfiSZtlRPp1QCSWCcJ4zOOefyZVnacDv58tLkhaysb6J/zwoO23FjTxjTSBoryeJsJ+nLh0pKSLK0ZWMkjc3YbhtJd0iaJ6lW0iRJV0raJMc5PwtsBzwU328g6VlJ8yXVSZoi6fx8XmcH+D3wa+VrjKhOrC3jNPaRdDtQBbxBGM0dSTdI+mWB4nPOOdcNmFlaz+n8JY3/fn8OENo19qrM32DhXcgc4LSMZacCc3PtJGkn4G1gEGEu6R2AbxPmgP5ujl2/D9xtZqkZb5KEBPIoYEfgEuC3mYlsoUgqj/NKt8crQE/g0DyE1Km1paTxN8BuhPEa69KWPw2c0NLOki6W9L6kVZJmS/pbnM86fZt9Jb0d/9qYKOmoNsTnnHOuRK1qSNCYCAVb+eo5vby2kZcmLQLg+NFb5OWYHWWv23dZn5rA9fEQcFDss5ByKtDSDCjXAlOB48zsVTObFZ+/CVydbQdJlcBxpI35bGZVZnajmb1nZjNjFe8zwGdynVzSKZImSKqX9El66aSkz0n6IK6bmp6AShoeS1dPlPQOIZ/ZPhaMXStpkaRlkh6TNCxtvyMlvRdLVBdLWj2rjZkZIRc6sYV7VvLa8qU8ATjXzF4hdDxLmQhs04r9DwD+COwBnAJ8DljdgUbSBoSBwv8bt7kTeFjS9m2I0TnnXAlKTR/Yp7KcnhX5KRF8avw8GhJJNu7fk/222SAvxyy0vW7f5fS9bt9lMpDY6/ZdJu91+y6nF/iUVcCzwNcBJO0GbAI819wOkjYEDgH+EhOmtZjZsmZ23Q3oBYzLcexdCQnjf3Ns8zngn8CNwChCkrs4rhsGPAr8C9iFkMDeIWnvjMNcBlxE6KMxG7gB2JZQ4rkvsAh4VFKZpArgQUJeshNwGOven3doIdHtCtrSEWZT4NMsyytbcxwzOzrt7WRJlxA+8JRTgRXA+fFLmCppPAe4sA1xOuecKzGp6QPzORNMqmr62N02z2tv7EKJCeLtrCmY2R64fa/bd+HtMz68o4Cnvgv4GfA34BvAfUBTju23JYxcNLmN5xkGVJlZXeaK2JnkUKAHcKmZ3ZvjOBcD15nZ3+L7qcCr8fX3gHfNbEx8PyW2o/w/QoFVyu/M7Pl47uHAV4GNzWxFXHYOsAzYJx5/AHC/maXmnvwgI6b5wFY5Yu4S2lLSOInsWfTx5PirIYcNCR9Iyj7ASxl/tbxAyPidc851Yan2jIPy1J5x3vJa3pixFCipqumLCQljKsNNDSl5cYHP+ziwXWyneDIhiSyEXoSh+rL5NqGW8SzgR5KOy3GcUcDLzazbEXg9Y9n/4vJ076W9HklIVudKqpZUTSiB7Q1sY2ZLCIn0eEn3STpDUt+M49XF7bu0tiSNVwDXSDqb8EU+RNIfCY1Wr2jLSSUNJJQe/jNt8cbAwoxNF8XlzjnnurBleR5u59FxczGDbTfqy8jNB+TlmIUU2zCOYE3CmCJgRCHbOJpZA6H69Sag2szeamGXj+PzDm081RJCx5lsMcwxs4lmditwFbkT5VQy3dy61qhJe90PWAmMzniMAB6L8Z0MfJ5QuvpT4ANJ6VMoDyZWkXdlrf4Smtl9wAXAz4E+wC3A14Bvm9mjrT2OpJ6EhrfTCbPJrF7VhmOMiQ1ZVz9au69zzrnOpaEpyaqGBJC/6ul/vx86/x632xaUwkgob5/xYRKYwrrJkAFT4vpCugv4LHB3Sxua2WJgLHB+tmFmYsFQNh8AfSRt2cIpBCRyrB9P6JSbzSRgv4xl+8flzRlHqH6uNLNpGY+VqY3M7A0z+xWwO6GXeHpv6R1Zv1rXktKmv1zM7DYz25pQ+repmW1lZq0uxo6NSe8D+gNfNrP0NhMLWLdUcSPWLX3EzMaYmdIfbbkO55xznUeqPWNlmejbo/2dYKYsWMlH81YAcNzozdt9vA50OWuXoqWqqi8v9InN7GXC79w/tLRtdC4hUXpW0hGxV/IBkm4BftTMOeYBH5HW1C3ue7qknSVtK+kbhAKq+3Kc+3fA9yWdJ2k7SftJOjWuux7YMxYujZB0LvAVmunRHeOaROg480Dseb21pINjb+pB8f3lcYSXrQhDDPUFpqUd5gDg+Vw3rCtYr+Lu+FdGjaSjW9u7WVIZcAdhUM+jzKw6Y5M3Cb2x0h1GGBPSOedcF7W6PWPvyryUCj4SO8DsvuUgttogs+lZ5xU7u5xB6HhBfD6jwJ1gVjOzxWbW2MptJwB7Ewp87iaU5N0KLCX0RG7ObYSkK6We0HnldUJJ3U+AX5pZriTvaUIn2XMJI7jcRyj5w8w+IfS1+AqhRPJ84Jtm1lIucSphqJ9b066ljNBWsYbQjvIRQvX0xcBZZvYBgKQhwEG0PExRyVOW3vLZN5TuAV43s7/FsZbeJ3Q9bwJOMLPHW9j/FuCL8TE/bdUiM0vEIXemEhLLG4FjCV3idzGzqZnHy3L8bD3/nXPOdXL/+2QpM5fWMGKjfuw5dFC7jmVmHPinl5hdVctlx4zkjAOG5yXGVspbrddet+9S1gFV0h0uVl1PAvY1s1nFjicfJP0c2NbMvl3sWAqtLSWNh7Bm3KRjCPX/mwFjCJ1hWnJW3P49YF7aY0uA2Dvpi8CBhIT0TEIy2mLC6JxzrnQtq0l1gml/e8Z3PqlidlUt5WXi6F03a/fxiqUrJowAZrac0FN6aLFjyaPlwK+KHURHaMs4jUMIxdAARwIPmdmCWAL5s5Z2bk27QzN7HdizDTE555wrYYmksbxuTfV0e6XGZjxwuw3ZsF/Pdh/P5Z+ZPdHyVqXDzK4rdgwdpS0ljYuArePrI4GX4us+hLkjnXPOuTZZXte4urfHwF7tSxobE0me+HAeUFJjMzpXMtpS0vgAcLekKYSq6dQUOqNZ02jXOeeca7XU+IwDe1W2e9aWl6csoqqmkd6V5Ry58yb5CM85l6YtSeNPCfMzDgMuMLPUwJibAzfnOzDnnHNdXz5ngkmNzfi5nTehb8+2/HpzzrVGq3+q4piKf8my/Mq8RuScc67bqKrJz5zT1fVNPPdRGJjDq6adK4ycbRoltWlUVEml21XNOedchzKz1SWN7U0an50wn7rGJEP69uCz22+Yj/Cccxla6gjzgaS/SMqc6Hs1ST0lfV3SO8Ap+Q3POedcV7WqIUFTMoyv2945p1NV01/aZTMqyws2TbNz3VpL1dOjCdP1jJM0gzBryxzCCOlDgJHAPoSheC5ry5SCzjnnurdUKWPfHuX0qFj/RG/RynpenbYIgOO8atq5gsn5U2pms83sdGArwrRA/YAvACcDewATCNMBjfCE0TnnXFuk5pxu7/iMj38wl6TBsCF92GPYoDxE5opJ0s8kXVvsONpC0tckPVXsOAqtVX/amdl8M7vKzE4ws93NbEczO9DMfmRmz/j8fc4559oqXzPBpKqmj9tt87zMXd1dSBorySSdnLF8qKSEJEtbNkbS2IzttpF0h6R5kmolTZJ0paT1Hu9IUn/gQuBPacvOkfSqpBpJM9f32AX2ALC9pM8UO5BC8oYfzjnnimJNJ5j1b884Y/Eqxs1eBnjV9HqaA5yWsexUYG6unSTtBLwNDCLUOO5AmB5wA+C77YjnZGCCmc1MW9YLeAS4vh3HXW+SWvyCmlkSuAc4p/ARFY8njc455zpcfVOCmsYE0L7q6UfitIGjNh/Adhv3y0tsnUHTzTd11O/nh4CDJG2ctuxUQgKUy7WEiT2OM7NXzWxWfP4mcHVqo9hRdmIsiRwv6YQWjnsi8GT6AjO72sz+BHzY2ouStGcsSa2VtFjSnWnrtpX0TFy3QNLvJJWlrZ8p6UJJj0iqBb4Vl/9Q0vRY4vmWpIMyTvsk8GVJ5a2Ns9R40uicc67DpUoZK8tF3x7r9zvWzHgkVk13lbEZm26+6fSmm2+aDCSabr5pctPNN51e4FNWAc8CXweQtBuwCWtmfVuHpA2BQ4C/ZGueZmbL4naHAX8DLiV0nP0dcKekvZs5roD9gHfX+2rCcTYCXgAmAnsDh6eOGZPDR4HauO6bwFnAjzMO8zNC6eZI4FFJ3wLOA74HjALuAJ6UtGXaPu8TplbetT3xd2aeNDrnnOtwVWntGde3HeIHs5czY8kqJDhmtzYNK9wpxQTxdmD7uGh74PYOSBzvAr4RX38DuA9oyrH9toTpwie3cNxfApea2YNmNt3M7gHuJiRp2QwG+gPzWht4M84FPjaz75vZeDMbZ2Z/jeuOBIYDZ8Z1TwK/Yt2k8WEz+2eMe268lvNiP47pZnYN8BqhVBYAM6sDlhE6D3dJnjQ655zrcKk5pwe1oz3jv2PV9AHbbMAmA3rlJa4iuxgwQkJGfLa4vJAeB7aL7RRPJiSR+bAL8FdJ1akHcCawTTPbpz7E+naedxTwSjPrdgQmp0pDo/8Bm0kakLbsvdQLSf2ArYGHMq7lUNa9ljqgdzvj77TaNDlnbAz6BcJfP7eY2XJJw4FlGR+Ac84516zUcDvr23O6KZHksQ9CgVRX6AAT2zCOyLJKwIimm28qq/jO2clCnNvMGiQ9CNwEVJvZW5IOybHLx/F5B0KVbHP6AecTqorT1Taz/ZL4PCjHMVsjlWw3t641atJe943PXwMmZWy3IuP9IGBxK89Rclpd0ihpGPABcC9wBaGHFIQvxB/yHplzzrkuKZE0VtSF2s/1TRpf+3gJi6vr6VFRxhdGbZrP8IoiJoRTWDfZMWBKoRLGNHcBnyVUH+dkZouBscD5ytK2QNLA+HIcsI2ZTct4zGnmuPWEe9DsLHStNB7I7KSSMgnYQdKgtGX7A/PMLDMBTFkIzAe2zHItC1MbxTypD+G6u6S2VE//lXAjhrD2XwmPAIflMyjnnHNd1/K6RgwoEwzotX5JY6pq+ogdN17vY3RCl7N2KVmqqvryQp/YzF4GNqL1hUDnEpK7ZyUdIWm4pAMk3QL8KG7zO+CHkn4kaXtJoyWdJ+nEHMd9AVhrrENJm0oaDQwDesTjjM5xjL8TqtuvkzRS0ihJqZieBT4BbovLjwIuA65q7mCxs8/vgMslnRl7X+8l6ReSDk7b9ADgw/REsqtpS9J4IPDr+JdAuhlA6dcNOOec6xCpntMDelVSXtb2TjC1DQmemTAf6BpV0ykV3zn7DuAMwlA2xOcz4vKCM7PFZtbYym0nEHofLyCUTk4CbgWWEmaQw8weBU4hXNN4Qo/so4FZOQ59G+sOW/NdQhvDy4DN4uv31t11dWwLgc8BuwHvAC8RZrFLjad4HKHK+S1Cx6PbgD+3cL3XEHpUXwR8BDwG7Mna41meFI/XZam1k7lIWgnsYWZT4+vdzGx67Dr/tJlt0MIhCkqST0zjnHMl4O1Pq5i6eBVbD+nDflsNafP+j30wl/PufY8BvSp46+Ij6FnRaYbFy9t0NIVsw9jZSXoBuNnM7it2LK0Vq6bfAHY0s+XFjqdQ2lLS+BqhV1VKKkP7EfBy3iJyzjnXpS2rXTPczvpIDeh99C6bdaaEMa+6a8IY/ZDSG91lKPDtrpwwQtt6T/8CGCtpx7jfzyXtCuxEqMd3zjnncjKzdk0fWLWqgbGTFwFdq2rarRGrvicUO462MLPXih1DR2h1Jm9m7wD7EsZP+pjQy2oKsG/8gJ1zzrmcqhsSNCVDRdX6TB/4xPh5NCWNzQf2Yp/hba/ads6tvzaN02hmEwlT7qyXOOfkD4C9gAFmprR1hxAaq6YbZ2aj1/d8zjnnOpeqmjA+Y98e5fSoaHsNZKpq+pjdNqdsPTrROOfWX5uSRgBJfYCNySilNLPprdi9D/Ai8Dyh+3o2m6W9blUvLuecc6WhPe0ZZ1fV8NbMKsCrpp0rhlYnjbEt463APpmrCJ1iWmyNbGZ3xWMdkmOb+a2NyTnnXGlpT3vGR8aF0U1GbNKPnTbtn9e4nHMta0tJ4+1AA/AVwsjoBRnfRtJMQinma8BPzSzXeE7OOedKSCppHNSnbSWNZra6avq40VuQZSIS51yBtSVpHEUYp3FygWKZB5xFGIhzCHAJ8JKkUWa21jyVksYAvypQHM455wqgrjFBbWMCaHv19KT5K5myoBqA43bbPO+xOeda1pZWyO+ydnvDvDKzyWb2TzMbZ2YvEUZsHwJ8Kcu2Y8xM6Y9CxeWccy4/Uu0Ze5SLPpVtG18xNW3g3sMHM3Rwn7zH5pxrWVtKGs8BrpN0FfAhGZ1U8l2NbGYrJU0DhufzuM4554pjddV07x5tql5OJo3HYntG7wDT9Un6GbClmf2g2LHkg6SLgOFm9r1ix9JebR3vYDDwL8L4jDPiY2Z8zitJvYFtCBOLO+ecK3FVtWG4nbZWTb85cylzl9dRUSaOHlWwCq9uR9JYSSbp5IzlQyUlJFnasjGSxmZst42kOyTNk1QraZKkKyVt0o6Y+gMXAn9KW3aTpBmS6iTNkXSdpH7re44iuA44SdLwYgfSXm1JGu8AVgFfBQ4GDoqPA+NziyQNkTQa2C6+Hx0fPSSdLelYSdtK2hP4f0A18GQbYnTOOddJre453cZOMKkOMIfssBGD+7a917XLaQ5wWsayU4G5uXaStBPwNjAIOAnYAfg2sAHw3XbEczIwwcxmpi17C/hGPMcpwCHAn9txjjaR1K4vnZmtJOQy38pPRMXTlqRxZ+BbZvagmb1qZv9Nf7TyGMcC7wE3x/fvxcfmQCXwF8LUQU8CTcDhZlbdhhidc851Qk1JY2VdE9C24XbqmxI88eE8oHtVTc/eYsuOmnv5IeAgSRunLTsVuKeF/a4FpgLHxZxgVnz+JnB1aiNJX5c0MZZEjo+TfORyIhmFRWZ2c8w1PjGz/wDXA5/JdRBJe8aS1FpJiyXdmbZuW0nPxHULJP1OUlna+pmSLpT0iKRaYrIn6YeSpkuqkfSWpIPS9tlG0tOSVsTHG5K2SwvpyXhtJa0tX8r3gfUucgYws9syO7DEx0wzu9bMtjOzXma2iZmdYGbT2nM+55xzncPy2kYMKBMM6NX65vRjJy9iRV0TfXuUc8SO7foVVBJmb7Hl6bO32HIykJi9xZaTZ2+x5ekFPmUV8CzwdQBJuxF+1z/X3A6SNiSU9v3FzNYZfs/MlsXtDgP+BlwKjCRM6nGnpL2bOa6A/Qgdb5s79ybACUCzhVWSNgJeACYCewOHp44Zk8NHgdq47puEkVt+nHGYnwGPxLgflfQt4Dzge4TRZO4AnpS0Zdz+78DieMy94nUn0473DrCTpA2ai7sUtCVp/A3wF0nHSNpK0ubpj0IF6JxzrvSl2jMO7FVJWRs6waSqpj8/clN692hbj+tSExPE24Ht46Ltgds7IHG8i1D9S3y+j1Db15xtCRN7tDQE3y+BS2MN5XQzuwe4m5CkZTMY6E8Ygm8tkn4haRVhnOhq4Ic5znsu8LGZfd/MxsdRWf4a1x1J6GB7Zlz3JGEIv8yk8eE4ost0M5sbr+U8M3smLruGMJ70qXH7LYGn40gwU8zs7oyZ8uanbVey2pI0PgHsTsi8pwOfxsfs+Oycc85ltT7TB66oa+T5SQsBOL57VE1fTJg4I5VVp2Zcu7jA530c2C62UzyZkETmwy7AXyVVpx7AmYROrtn0is/1WdbdQMhBvgRsDfw2x3lHAa80s25HYHKqNDT6H7CZpAFpy95LvYidbrYGHsq4lkPTruU64B+x2vsCSUMzzlsXn3vniLvTa8uQO4cWLArnnHNd2ppOMK1vz/j0+Pk0NCXZsF9PDti2pGv1WhTbMI7IskrAiNlbbFk2dM6nySzr283MGiQ9CNwEVJvZW7mm+wU+js87EJquNacfcD6hqjhd7bqbArAkPg/KEuNSYCkwRdIy4GVJlzXT7yGVbGfT2mLumrTXfePz14BJGdutiPFdL+kZ4Jj4uEzS58zstbjd4Pi8uJXn75RanTTGxqfOOedcmyTNVpc0DmpDSWOqavqYXTejoryj+oUUx9A5nyZnb7HlFEKVdHpiY8DUQiWMae4C/kNof5iTmS2Ow++cL+n+zHaNkgaa2XJgHLCNmd3YmgDMrF7SFEJp4Fs5Nk3dn+buyXjg6GbWTQJ2kDQorbRxf2Cema1oZp+FhOrlLc3s8RzxTyd0Arpa0pOEdqKppHFHYCWhprZk5UwaJW0e6/Jpqd1iajvnnHMuXXV9E03JkFe0NmlcsKKO16aHgqduUjUNcDmhTWOqijr1fHmhT2xmL8cOJMtbucu5wKvAs5KuAKYRRkL5FjAL+DWh48v/kzSX0Hu4L2GYvnlm9mAzx32B0DP6TghjRhLaDT5LKGkcAVwJPGpmNc0c4+/AjyRdR+jlLcJoLFfH43wC3Cbpl4Q2hpeRYwgfMzNJvwMuj72pXyGUHH4O+K+Z/UfSXwnN+KbFY+7K2r3ADwDGmlmiufOUgpb+dPs0rRt+qu1i5sPbNDrnnGtWqpSxX49yerSyxPCxcXMxg6036MuuQwcWMrxOY+icT+8AziAMZUN8PiMuLzgzW2xmjS1vCWY2gdBTeAGhc8sk4FZCYndD3OZRwriKZxBK/54jlADmmkHuNuDLklK9nhoIY0M/S+h4c0M8zpk5YltISOh2I/RafgnYI65LEqYp7ksozbw9njPnuI+x48vPgIuAj4DHgD1ZM55lJaF6fxJwL2HIouvTDnFSPFdJU5be8mtWSgcTsuim+LpZxa6+lpSt579zzrkiGzd3ORMXrGTLQb357Nata5v4pWteYfzcFZx/+Pacf0S2pn6dUuu7hbegkG0YOztJLwA3m9l9xY4lHyTtT0ioR5Z6SWPO6ulY5Dpd0t7FTgqdc86Vpqo2tmectrCa8XND87JuVDW9lu6aMEY/JJQSdhWDgbNKPWGE1nWEGQ507cGxnHPOFcyymrbNOZ3qALPb0EEM37BvC1u7riZWfU8odhz5EseC7BK6dnc055xzRVXbmKC2KRSatSZpNDMeGReaiR0/2ueNcK4zae2QO0Ml9cq1gZnlatjqnHOuG0p1gulRXkbvypYrrd6dtYxZS2soLxNf2tWTRuc6k9YmjS2Nl2R4FbZzzrkMqekDB/euRK2YPjBVNf2ZbTdko/49Cxqbc65tWps0Hk/oRu+cc861WlVNaiaYlqumGxNJHv8wTDvsVdPOdT6tTRrfiOMeOeecc63WlplgXp26mKWrGuhVWcbnRm5a6NCcc23Umo4wPvihc865NmtKJFlR3wTAkN4tzzn971g1feROm9KvZ6tnuXXOdZDWJI15G6zUOedc97GsLpQylgn698qdBK6qb+LZiQsAr5p2+SVpK0mzJfUpdiytJalvjHlYsWNJ12LSaGZlXjXtnHOurdKrpsta6ATz3MQF1DYmGNynkoNGbNQR4XV7ksZKsviolvSmpM8XO64CuAS4KTVXtaSRkh6WNCde+yFFjS4LM1tFmJbwkmLHks7HaXTOOVcQqZlgBrehavroXTajspXzU7u8+DOwGWFu5neBRyRtV4gTSWr5i5D/cw4ETgbuTFvcB5hCmHmmw0lq7bAAdwEnS+pfyHjawn8ynXPOFUSq53RLnWAWV9fzyrTFQPedNjBTcuz5HfX7udrM5pvZFOBcIAEcASBpj1gaWStppqRfSVo9vJ6kq+JUwzWSJkj6WvqB4z4XSnpEUi3wLUnbSHpa0or4eCM9SZX0Y0mzJNVJek3SHmnrzozH/Fp8rpJ0SwvJ6NHALDObkVpgZm+Z2UVm9lBrb1KsLr5O0sJ4vW9K2iWuK5f0B0kL4r16WtI2afuOiffxp5LmAWNbc3/NbDowGziqtXEWmieNzjnn8i5ptrpNY0szwTzxwTwSSWPo4N7sudXgjgiv00qOPf/05NjzJwOJ5NjzJyfHnn96R53bzJqARqCHpA2AZ4HHgV2AM4FvAOen7bIE+DowCrgauDOVSKX5GfAIMBJ4FPg7sBjYG9gL+BuQBIhJ52XARcDuhKkEn5SUPpfkxsApwDHAV+LjrByXdQChBLW9bgIOIpRa7koooU0leBcS7s+ZhOtqAP4tKT3H2oswn/bhwDdbeX8B3gE+k4f488K7pznnnMu76vomEskw+EZLJY2pquljd9u8VQOAd1UxQbydNaOWbA/cnhx7PmWHXHVHIc8tqRK4ABgAvAL8AHjezK6Mm0yT9CvgUkLChJn9Ju0QN0k6Fvgy8GHa8ofN7J9p59kSuMfMJsdFU9K2PR+4xszujdt+D/gCcCohaQPoCZxlZovjNg8ABwPXN3NpwzLO0Wax1PAUYDcz+yAunpYR96Vm9lTc/kxCCeERhMQQQgnud9LaVV5KC/c3mg9s257488lLGp1zzuVdqj1jv54VOdsofrJkFe99ugzwqmngYkLCmMqcUzOuXVzAc/5CUjVQC/wU+IGZvUco/TohdpCpjtv8A0ivdj1N0luSFsf1nwe2zDj+exnvrwP+IekZSRdIGpq2bkfg9dSbWPL5dlyeMj+VMEbzCKWPzekF1OdY3xojgeVpCeNqsc3kpqwd91JgMmvHPTmVMEYt3t+oDujdzvjzpkOTRkknSHpB0nJJ64z/KGlfSW/HtgwTJXWaenznnHOtt3ommBZKGR95fy4AO202gBGbdJr2/h0utmEcwbrD3AkYUcA2jjcAo4GhZjbEzFIldv0IHTFGpz12AXYGkPQZ4BbgDuDIuP4ZIPMDT0+UiMffCXiS0FZvkqQD2hBvY8Z7I3cuswQY1IbjZ5NK3tujJuN9zvubZjChOr9T6OiSxj7Ai8AfMlfE+v2ngP8SenHdCTwsafsOjdA551y7pc853Rwz49/jQtV0dx+bseyQq5KEatTM5MSAKXF9ISw1s2lmNj9j+Thg57hurUdcvz/woZldE0smP6aV1ahmNt3MrjazI4CXCe0iIZTO7ZfaTlIFoS3gpPW/PD5g7RK/9TEBGCRp18wVZrYcWMDacQ8BdiB33C3d35Qd47adQocmjWZ2l5ldDvwvy+pTgRXA+WY20cx+D7wJnNORMTrnnGu/ZbUtlzROmLuC6YtWIYX2jI7LWbtUK1VVfXkRYrkW2EHSDZJ2k7RD7LX8i7j+Y2CkpKMl7UDo0NJi+wJJf5V0hKThkg4kdCpJtTm8GjhP0tcl7Uhop9gTuKcd1/ECsFd6D2tJPSSNljQ6Ltouvh+S7QBm9jHw/4B7JB0ee4CfmLb/1cCvJR0laRRwGzAdeD5HXC3d39QQRXu2cJwO1ZnaNO4DvGRm6X9lvQDsW6R4nHPOrYfaxgR1TaFgbFCf5kdDSXWA2XfrIWw2sNM02yqa2NnlDGBqXDQVOKPQnWCyMbNPCb2FhxNqAN8idJSZFTf5N3AzoYr1NUL168OtOHQloVPLJOBeQkJ4fTznvcCvgSsJpWujgC+aWXU7ruNNQqeU9EHLNye0tUy1t7w5vj42x6G+Qyjwuh8YD/wEaIrr/kSopr+dcJ96AceZWbOlw624v8SYZ5lZPnp/54XWztE66KRh9PWXzExpy54F3jOzi9KWfR/4kZntkLH/GOBXmcctxrU455xb29wVdfzn48X0rCjjy6M2y9ojOpE09v/DCyxcWc8fTtiFr+/dqWZLW1956/qdHHt+WQGrpLsVSacBp5rZF4odS1tIega408zuKnYsKZ2ppLHVP2xmNsbMlP4oZGDOOedab1nNmvaMzQ2h8/r0JSxcWU+P8jKOGrVZR4ZXEjxhzKu7gbEqrbmn+wAv0b6q+bzrTOM0LmDdbvMbAT7vtXPOlZCq2pZngklVTR+640YMbKGHtXPtEauJ1+mA25nF4Xk6XcydqaTxTeCQjGWHAW90fCjOOefWV0tzTtc1Jnh6fOis62MzOlc6OnqcxiGxt9F28f3o+OhBKD4eqDCX5U6SLiJ0grmxI2N0zjm3/hoTSVbWh/4Bg/tkL0F8cdJCVtY30b9XBYfukGtcZudcZ9LR1dPHAremvU/1XNrazGZK+iKhG/r3CN3VTzCzqTjnnCsJy+N80+US/Xtm/xWTqpo+atSm9Kosz7qNc67z6dCk0cxuI4xf1Nz61wljEjnnnCtBqZlgBvWuoCxLJ5jltY2MnbwI8Kpp50pNZ2rT6JxzrsSt6QSTvT3jkx/OoyGRZJMBPdl36w06MjTnXDt50uiccy5vlrUwfWCqavrY3TanvMxHS3OulHjS6JxzLi+SZmumD8zSCWbuslremLEUgOO8atq5kuNJo3POubxYWddEIk7MNbDXuknjo+PmArDdxv0YudmAjgzNdWOStpI0u5QG985F0pbxevp19Lk9aXTOOZcXqfaM/XtWUFm+7q+XVNX08aM3b3amGNdxJI2VZPFRLelNSZ9vec+ScwlwUxwwG0knSHpX0gpJyyW9JGnvIsfYanHe6meBH3X0uT1pdM45lxdVOdozTp6/kknzVwJw3G5eNd2J/BnYDNgDeBd4RNJ2hThRHJO5Q0kaCJwM3Jm2eClwGWG0ln2BycDTHVVyJ6lnHg5zF/AddfBfX540Ouecy4vV7RmzJI2pUsY9txrMlkO6RC1hYY1RR/1+rjaz+WY2BTgXSABHAEjaI5ZG1kqaKelXklYPrBkn45guqUbSBElfSz9w3OdCSY9IqgW+JWkbSU/HUr4Vkt5IT1Il/VjSLEl1kl6TtEfaujPjMb8Wn6sk3dJCMno0MMvMZqQWmNlYM3vEzKaa2STgJ8AQYMfmDiKpr6TrJC2M1/umpF3iunJJf5C0IN6rpyVtk7bvmHgffyppHjC2pfur4PeS5sR7MV3SOWkh/QfYEOjQElJPGp1zzrWbma0ZbqfP2r/Dk0lb3Z7x+N027/DYSsoYnc4YTQYSjNFkxuj0jjq1mTUBjUAPSRsQqkAfB3YBzgS+AZyftssS4OvAKOBq4M5UIpXmZ8AjwEjgUeDvwGJCsrMX8DcgCRCTzsuAi4DdgQnAk5L6ph1vY+AU4BjgK/FxVo7LOoBQgpqVpArg2zGmyTmOcxNwEKHUcldCCW0qgb6QcH/OjNfVAPxbWivx3wvYDTgc+GYr7u9JwKmE+7tDvMYFqYOZWQIYB3wmR8x519EzwjjnnOuCapuS1DclgXVLGt/+pIo5y2qpKBNH7+pJY7NCgng7ELsTsT1wO2MEY+yOQp5aUiVwATAAeAX4AfC8mV0ZN5km6VfApYSECTP7TdohbpJ0LPBl4MO05Q+b2T/TzrMlcI+ZpRK0KWnbng9cY2b3xm2/B3yBkDzdFLfpCZxlZovjNg8ABwPXN3NpwzLOkYpjGDAR6AUsAr5gZiuzHSCWGp4C7GZmH6TuR0bcl5rZU3H7M4HZhBLbZ+M2CeA7ae0qLyX3/d0SmGxmr8T1n2QJbT6wVTPXXRBe0uicc67dltWE9oy9KsronTE1YKpq+qDtN2JI3w5v1lZKLiYkjKl2aorvLy7gOX8hqRqoBX4K/MDM3iOUfp0QO8hUx23+AaRXu54m6S1Ji+P6zxOSnXTvZby/DviHpGckXSBpaNq6HYHXU29iyefbrF1tPD+VMEbzCKWPzekF1GdZPhcYDewPPAbcK2lQM8cYCSxPSxhXi20mN82Ieymh1DI97smphDFq6f4+BIyU9JGkv0g6KEtcdUDvZmIuCE8anXPOtduamWDWLmVsaEry5IfzADhutJcyNiu0YRzBmoQxRcCIArZxvIGQPA01syFmliqx60fobDE67bELsDOApM8AtwB3AEfG9c8AmQ1a0xMl4vF3Ap4EjgImSTqgDfE2Zrw3cucyS4BBmQvNrMnMppnZW2Z2dlx8SjPHSCXv7VGT8T7n/TWzmYSS5kuA/sDjkv6acYzBhGr1DuNJo3POuXarWt0JZu2SxP9MWcSy2kb69CjnyJ03KUZopWGMJQnVqJnJiQFT4vpCWBqTp/kZy8cBO8d1az3i+v2BD83smlgy+TGwbWtOaGbTzexqMzsCeJnQbg9C6dx+qe1ie8O9gEnrf3l8QI4OLmlEqELOZgIwSNKumSvMbDmhrWF63EMI7RBzxd3S/cXMVpnZg2b2HUK7y8y2mzvG43QYTxqdc861W1UzM8GkqqY/v/Om9OnhzehbcDlrl2qlqqovL0Is1wI7SLpB0m6Sdoi9ln8R139MqD49WtIOhA4tLY6lJOmvko6QNFzSgYROJak2h1cD50n6uqQdCe0UewL3tOM6XgD2Su9hHXt0HyZpa0m7SroO2Ah4KtsBzOxj4P8B90g6PPYAP1HS6LS4fy3pKEmjgNuA6cDzOeLKeX8lnRF7i+8kaQRwPGltMyVtRmgKMLbtt2T9edLonHOuXRoTSarrm4C1O8GsrGvk+Y9Ch0+vmm6F0NnlDGBqXDIVOKPQnWCyiQNIHwQMB/4LvEXoKDMrbvJv4GZCFetrhOrXh1tx6EpCp5ZJwL2EhPD6eM57gV8DVxJK0EYBXzSz6nZcx5uETinpg5b3jTF8BDxH6ExyhJnNWvcIq30H+B9wPzCeMExPU1z3J0I1/e2E+9QLOM6s+dLhVtzf5cD3gTfjYwhrV5+fCDxtZgtzxJx3MmtvNX3nIMm6yrU451wpWVRdz/NTF1FeJk7cdXPK4njDD74zmwsfHMeG/Xrw+s8OpyLLLDFdTP4GWh6jsgJWSXcrkk4DTjWzLxQ7lnyIQ/mMB842s1c78txeV+Ccc65dVneC6VW5OmEEeCRWTX9pl827Q8KYX54w5tPdwBaS+mT0YC5VmwLXdnTCCJ40Oueca6dlWdozLlxZx38/Dh07vWraFVOsJv5DsePIFzObS2gT2eH8Tz/nnHPtkm3O6cfGzSNpsNWQPozeclCRInPO5ZMnjc4559Zb0mx1SWP6GI2pqunjRm+OlL+mfs654vGk0Tnn3HpbWddE0kIPkFTSOH1RNR/MWQ7AcaNbHIXFOVciPGl0zjm33pbGqun+PSuoKAu/Uv79/lwAdtliINtu1K9osTnn8qtTJY2SbpNkGY/zix2Xc8657DKrps2MR8etqZp2znUdnbH39P3Aj9LeryhWIM4553Krqkn1nA4TboybvZyZS2ooExy7qyeNznUlnaqkMao1s/lpj64wppJzroCSieamjHWFZGZpc06HksbUtIEHbLshGw/oVbTYnMsHSf0lzZY0tNixtJaC8ZL2zfexO2PSeKykRZI+kPTzOGG5c86to/qavzNv9O7MHTaceaN3p/qavxc7pG6ltjFBQyKMQT2odyVNiSSPfxDaM3rVdOcnaXNJd0qaJ6lO0nRJd6XP0+z4EfCsmc2GMOezpP8naUZsQndmccNbV5we74/Ab/N97M6WND5JmFvxMOAvwI8J81A659xaqq/5O8v+cAWJRWEA6cSixSz7wxWeOHagVClj74oyeleW89+Pl7C4uoGeFWV8YeSmRY7OtcJDhNlFjgd2As4GqoHyYgUkqWexzp0pTtd3DnBn2uKewFzgYmB+EWJq7f15CNhf0rb5PH+nShrN7H4ze9rMPjSz2whJ4w+VMciXpDGZHWaKErBzrmhWXH9D1uUr//GPDo6k+1o9fWBsz5gam/GInTahf6/KZvdzLXvrsY8K+vtZ0mBgP+ACM3vDzGaY2fNm9l0zq43bnClpZnyeLala0o2SKtOO00fStbGGcJmkxyQNS1t/rKQ3JK2UNFfSdZL6pq0fI2mspJ9KmgeMlXRI/N3+OUlT4nmvk1Qh6Q+SqmKp6JFpx9lR0lOSFsc4npS0ddr61DEPlfRRjOdfkgbluE37AYOBl1MLzGymmf2fmd0D1LfyXldI+m28h7WSPpR0WNr6H0uaFUt7X5O0R9q61GdwuqSZwIy4fJt4r6vjfb1GUu+0OFcBrwJfaU2MrdWpksYs3gX6AhumLzSzMWam9EdxwnPOdbSmuXNZctrpJJcvz7o+sWixt3HsIMvS2jPWNiR4ZkIoePGq6fX31mMfnf7WYx9NBhJvPfbR5Lce++j0Ap2qGqgBjpeUq2RxY+AM4Gjgy8AxwEVp628AtgWOAvYFFgGPxlI6gF6EatLdgK8BBwO/yjjHXnH94cA305ZfAHwVOBH4FvB0jHkf4DHgtrQEth/wAPDZ+KgF7styPb+M13MYsDvw8xzXfgAwzsza+x/KZfGcPwBGAb8AkgCSvhbXXxTjmQA8mZ5YA5sApwLHAUfG5gPPAJOAPePyfQhV0uneAT7TztjX0tnbC44ifEEWFzsQ51xxJZuaWPXXv7Lixpux2tpmtyvfaEPKyotWu9atVNWsmT7wuY8WsKohwcDelRwyYuMiR1aaYoJ4O5CqPdseuP2txz5i72N2uiOf5zKzRknnEJK+CyX9D3gOuNXMlqRt2hv4jplNA5B0KSEJ/K2k4YSkbmMzWxHXnwMsIyQxr5vZ/WnHmi7pV4Tk5qdpyxPxHDXxGKm2DReZ2ftx2UvApmb26/j+d8APge2Aj8zsbeDt1AFjHIskDTOzWWnn+omZvRu3uRk4NsdtGgbMy7G+RbH07wLgq2b2aFz8cdom5wPXmNm9cfvvAV8gJIk3xW16AWeltas8HVhiZj9JO8//Ac9L+mFs0wih+vzo9sSfqVOVNEr6i6R9JQ2XdAKhXeONaTfAOdcN1b/4AosOPJjlV/0Nq62lbOBA+nzh81m37X/WWR0cXffUkEhS3RAKYAb1rlxdNf3FXTajR0Wn+tVSSi4mJIyp2jPF9xcX4mRmdhewOaEUbDwhgRkvKX0an6pUwhi9CWwiaSAwEugBzI3VpNVAFSHR3AZWVxv/K1a/riS0D9wyI5TJzYyUMiHt9UJgYsZ7gI3ieQZI+nuszl4BzIzrM8/1YdrreYSS1Ob0opVV0DlsR2gH+XIz63cEXk+9MbMmQvK7Y9o2i1IJY7QLsGfqnsf7/hzhvm+Wtl1dXJY3na2kcWfgcWAAMAu4EbiiqBE554qmae5cVvzs59S88GJYUF5G3+OPZ8Bvf0P5gAH0uObvrPzHP0gsWkz5RhvS/6yz6HfeucUNuptIVU1XlInGpiT/mbIIgOO9anq9xDaMI7KsEjDircc+Ktv7mJ2S+T5vLCF8GHhY0q+BqYTOH5emNsmxez9gJaGKNNOC+PwoMI5QcraQUOX7z4xtsw6tZ2aN6W+BxrR1Frs7pP5CuZLQBvF81iSME4C1GtdmOWauv3CWAO2dBzMfzecy708/4CXg+1m2XZj2ejB5rqntVEmjmX2h2DE454ovW1V0j513YtCVf6LHbrut3q7feefS77xzSSYSXiXdwdJngnly/HyaksbmA3ux91ZDihxZadr7mJ2Sbz320RRClXR6omHA1EIkjJnMbHnsjJLenm6IpG3NLFWlujewIG47jlDIU2lmH2UeT9KGhOs5wczGx2UnFCj8A4AbzOzJeJ7983DMDwjV7+0xjVBaeRAhgc40mZDsPgqh0wyhjedTOY45jlDtPMvMGnJst2PcNm+8DsE516lkq4oefPlv2PCZp9dKGNN5wtjx0tszpqqmjx29BWVl3i+xHS5nTZU0rKmqvjzfJ5K0iaRnJJ0Uq5B3kPQbQtXnk2mb1gI3SdpN0uGEThvXApjZJOBfwAOxp/PWkg6OvakHEaqqq4Dvxt6+XwW+l+9riT4GviZpZ0mfBf6ch2OOBbZKa2MJgKTRkkYTquaHxfdZx5iK1e5XAddKOi7eh6MkHRI3uRo4T9LXJe0IXE+ozr4nR1x3E9qB3idpL0nbKfRSz+wIcwDwfOsvt2WeNDrnOoWmuXNZevoZLDrtTBpnzQpV0V85gU1ef42+Z55JWZn/d9WZpIbbqWtI8PYnVYBXTbdX7OxyBqGKmPh8Rr47wUQrCCVplwBvAW8AnwO+ZmYvpG23kJDAPAU8Ep/Tm42dSujJeyuhN++thNyiLvY6PhX4PKGq+LvxfIVwASHBfofQgaTd5zGzecCzwEkZq96Lj80ISfR7hGtrziWEe3gj4T6svn+xA8yvCdXr4wgdgL9oZtU54loJHEJIHJ+P+/2GtE47knYhtPd8vMULbQN1lT4mkry/jHMlKFRFX8WKG2/KWRXtOo+kGQ+Mm0PSYPbCVVw7dho7btqfp390ULFDK7a8FbMWqg1jWyjMdjLGzIYXM45iknQgIdkbWUpJhqQbgU/NLK+zwnSqNo3Oue6l/sUXWHbxpaFkESgbOJCBP72Q3qef7iWLndiKuiaSBpjxzMTU2Izt7S/QMRKJJOXlnf+7VeyE0QVm9oqkawmlinOLHU9rKPQQmgFck+9je9LonOtwLfWKdp1bqj3j8tpGpi0MtWjH7ta5q6afv+d9Xrx/PMuX1jJwSG8O++oojjhldLHDciXAzK4tdgxtEUtE/1CIY3vS6JzrMF4V3TWk2jN+OGsZAPtsPYQtBuV1OLi8ev6e93n4hrdWv1++tHb1e08cmxen872tyGG4TqTzl9E757qE+hdfjL2ir251r2jXOVXVNpJMGq9PDxOHHN/Jq6afv/eDrMtfvH98B0fiXGnzkkbnXEF5VXTXYmYsq21gxuJVLKluoLJcfHFU1tFGiqqhvonXn5jMa09MZuXy7JN6LF9aWzJtHJ3rDDxpdM4VRLNV0X/6Iz1Gjy5ucG69zFiyig/nr6AhYbwfh9k5ZIeNGdSnR5EjW2PmxAWMfWA8H7w2i/rappzbDhzS2xNG59rAk0bnXN7Vv/giyy6+xHtFdyEzlqzi9VkhUWxMJBk/exkAB2y7QRGjCmqr63nl3xN54+mpzJ+1fPXyyh7l7LTXFgwY0ptXH5+8zn6HfXVUR4bpXMnzpNE5lzdeFd11jZ+/YvXrSXNXUNeYpGdFGQP79SxKPGbGpLdm8/LDE/norTk0NiRWr9tsq0Hs87nt+OxxO9NnQIhvo6EDvPe0c+3kSaNzrt2STU2suuoqVtzgVdFdSSJpLKiuZ+7yWqobErwzYwkvTlzI0lVhyJ3NBvWiPpHEzAhDwxXe8sWr+M9DE3jruWksXbhq9fJefSrZ5YAtOfiEkQwfuck68RxxymiOOGW0t2F0rh08aXTOAZBIJigva/sczl4V3bXUNiaYu6KOuctrmb+ynqZkmATj3ZlLefCt2WttO3NxDRNnL0e7Dy1oTIlEknEvz+DVRz5i6rj5JBNrJubYasSG7PfFEex71Ah69q5s8VieMLq2kNQf+AjYz8xmt7R9ZyepLzAZOMDMZrV1f08anevm7phwHfdMuJfFtcvYsPcgThl5MqeP/H6L+3lVdNcQekM3MicmiktqGtdaX1EmNu3fi6snLcy6/0sfLYBjRhYktkWzl/PSA+N596XprFxWt3p5vwE9GX3w1hzylZ3ZbJvit6ksVZI2J8yDfAQwmDDjyWvAt8ysoZixdSI/Ap5NJYySPgv8CdgRqCTMJX2pmT1TvBBbz8xWSUrNzf2dtu7vSaNz3dgdE67jb29fv/r94tplq983lzh6VXTpa0oaC1fWxUSxjprGxFrr+/YoZ2DPCpasrGfqvJXc979PmL8i+7A1s6tqSSaNsrL8VE83NSZ48+mpvPb4JGZOWkRqtt+yMrHtqE044Es7sMfh21JR2fZScbeOh4Bq4HhgIbAtcCJQtJsrqaeZZf+ydTBJZcA5wOlpi1cBVwEfAvXAacAjknYysxkdEFM+7s9dwAeSfmxmK9t0/hKafzsnSaU0l7hzHc7MWFgzl8lLP+Tj5VOYuXwGz00fS0Ny3WFJNuw9iKe/+so6y7NWRf/kQnqf4VXRnV1NY4K5y2uZu6KO+SvrSSTX/v+yR5lYsqKOGYtr+GD2Mj6at4JkC/+lChi+YV9euuCQdsc3e+pixj4wnvdfmUntqjWlnYM27MNeh23DwV8ZxZDN+rf7PAWWt4adPzjo5rJrX/5OweafljQYWArsZmZZRz+XdCYwJj5+CwwC7gbONbPGuE0fQsnbVwklb68AP0hVfUo6FrgY2BlYCfwb+ImZrYrrxwCHAE8C/wfMBH4OvAR8Hvg7sDlwB/DDGMc5QBVwjpk9F4+zI/BXYG9CgdhrMY4Zcf0h8ZiHAdcBQ4HnCKWqy5q5/gOAZ4GBZpbItk3cbkmM5cFm1lfEe3gmsAEwDfiRmb0Y1/8YOB/YGHg33t9347oz476XAr8GepjZ5pK2Aa4GDgVWEP4A+KmZ1cb9zieUkm4OLAJuMbMxaTFNIpSQ3t/cdWXjJY3OdTG1jTVMXTaBaVUfMX35NGatmMXclfNZuGoxNU2t+wN1ce2ytdo4elV06TEzqmobmbM8VDsvrW1ca93K2kaWVjfw6ZJVTJy7gplLatY5xoBeFew9fAh7Dx/CqoYmrnlx2trnAM49dLv1jrFuVQP/fWwSrz81hbkzqlYvr6gsY4fdN+fA43di5AHDutUfJD846ObTCUnWiB8cdPMU4PJrX/7OHQU4VTVQAxwvaUKOpGhj4Azg6Pj6duBTQvIGcENcfhQhKbwIeFTSHmaWBHrFbScAW8TtfwX8NO0cewFzgMOBJJAaLf4CQjK6KSHZHAG8DOwDnAvcJml4TGD7AQ8QEs8K4DLgPmDfjOv5ZbweA+4nJKgXNXPtBwDjmrs3sSTyK0Af4J1mjkGM5XTgB8B4QgKdjMf4Wlx/NvA+8GPgSUnbphJrYBPgVOA4oElSD+CZeE8uBAYQkus/AudJ2jse82TW3PdtMmJ6B/hMvAet5iWNzpWgZDLJ7FUzmbp0Ah8vC6WGs1fOYcGqRSytXYHR/M9CZVkFG/cdwub9NmX8osnUZkkkUyWNXhVdWpqSSRasrA+J4opaahtDQVXSjIUr6phXVcucqlqmzF/JopXrfu4b9+/JPlsPYZ+YKO6wSf+1qp0feOdTrnlxGrOW1jB8gz6cd9j2fGWPtneCmfreXP7z0AQmvPEpDfVrfh9vPHQA+xy5HQcevzP9BnfeuaxzaFdJY0wYbyckNEp7PqMQiaOkbxCSuCTwP0LJ261mtiSuPxO4FdjezKbFZd8Gfmtmm0oaDkwCNjazFXF9JbAMONzMXs9yzhOBP5rZNvH9GEKit5mZ1cRlhxBKBXc3s/fjsqeATc1s9/h+E2A+sLOZfZTlPBsSSti2MrNZacfcM60U7xfAsWa2XzP352/A5mZ2YpZ11UBPoBb4qpk93cwxehNKRb9qZo9mWf8/4CUz+0V8XwHMAH5jZjelfQZbprWrPB34fnrcsVT0eaAvcAJwOTAyR8L7Z2BbMzs+2/rmeEmjc51YdcNyJi39kGlVk5ix/GM+XfEp81bNZ+GqpdQnGnPuO7jXADbtuxFDB2zBVgO2ZttBI9hhyCi26LfV6hLEzDaNKaeMPDlURf/yEho/8arozqymoWl128QFK+tIWBgqZ05VDZ8sWsXcqlo+XlTNyrp1myEM36APew8fsjpRHDakT86hc07ac0tO2nPL9WrDuHJZDa88NJE3n5vGorlrmlH16FXBqP2GcvCXR7Lt6M06bOieTupi1iSKsCZxvJhQPZtXZnaXpEcJJXyfJVSRXiBpLzObEzerSiWM0ZvAJpIGAiOBHsDcjM+tN6Fk6/VYbfw7QmniYELekZl7TE4ljBkmpL1eSKhOT38PsBHwkaQB8TyfI5RMpv6T2hJI7yX8YdrreYRS0ub0IrRbzGY00J+QoN0maf9m2jRuR0guX27mODsCv0+9MbMmSW/H5SmLMnpu7wLsGRPXFBHu+2aE5PFy4OOYbD8GPJVRslYXt28TTxqdy7O2Dl2TSDYxY/kUplRNZPqyacxaMZM51XOZX72I5fXVOfftVdGDjftswBb9N2PYgGFsPWg7th+0M9sP3pk+lX1bPHeqs8s9E+5laXUVQ/oN5jubHsehV7zBohfi/2NeFd2pmBlLaxqZs6KWOcvrWFbbSENTkk+XrGLG4lXMWryKWUtqqG9auzmcBDtuOoB9hg8OieLwIWw8oNd6xdDahDGZTDL+v7N45ZGJTH53Hom0mIZuO4T9vrA9+x+zI7060TSExfKDg24uI1S/ZhKhqrogbRxjCeHDwMOSfg1MJbQZvDS1SY7d+xGqpPfMsm5BfH4UGEeoXl1IqPL9Z8a22RJGUu0m0+JoTFtnMVFNJYdXAvsREt+ZcdkEQjvLXMfM9RfwEkLVbrbYUon0e5L2A77H2lXuKfn4Kyjz/vQjlJpm6624MCaeuxJ6xX+BUFL5GvDltO0GA4vbGognjc7lSUtD1yypXcSUpR8ybdlkZiyfzuyVnzKvegGLaqpoSjbbxpoyiQ16D2LTfhuzZf+hbDVgG7YbvAM7DB7JJn23aHfJzAkvJjnyH9UkFi1H/Zqg4TpqGsL/q14V3Tk0JlLVzqEjS1VNAzMX1zBzUTUzFofSxMyOLZXlYtehg2KCOJg9txrCwFaMY5gPS+evZOyD43n7heksT2sr2adfD3b77FYcfOIothyxYYfEUiquffk7ydiGcXvWTjQMmFrITjGrT2S2XNI8QhVnypDYvu7j+H5vYEHcdhyhPV1ljiri7YETzGx8XHZCgcI/ALjBzJ6M59k/D8f8gNCmsiUCmvtPfBqhtPIgQgKdaTIh2X0UVldP7wU8leN84whtTGc1NzRSXP4koX3kXcAbkoaYWaq0dkcga5V6Lp40OpcH6dW8ZQlbPXTNEx8/AWbMX7WYVY21OY/Rt7I3m/bdkM37b8awAVuxzaDtGTF4Z7YdtCM9yts3VVuyqQlbsQJbvhxbsYLkiuUkV6yk9tHHqHn8idXbWXVod63evRl08S+8KrrAcs2ksqqhaXUnlqmLqpm+MCSIMxetYsHyunWKf/r0KGePYYNDe8SthzB66CB69yjMyCnZZlVJNCV45/mP+e9jk/h4wkIsJrESbL3TRhzwpR3Y63MjqCxQTF3E5WRv03h5vk8U2wTeAdxCqLI14BuEqs8fp21aC9wUe/huSOhgcS2AmU2S9C/ggbh+KjCMkGhdTGjLVwV8V9JfCMnQ9/J9LdHHwNckvQgMIXQKaa+xwFaSNjWz+QCSzgZmE5K9HoRrPYjQoWYdZlYj6SrgWoUf9g+BHYBaMxtL6AF9k6QPCB1hLiBUZ9+TI667CZ137pP0O0Ib0p2Bz5rZTyV9CdiKUCW+CvgaoX3nsngNPQilwxe28X50vqRR0s+B8whd+58Fzjaz7KPKdpCalSvo0780q+VKNfZixt2QaKCqbnF41C9mWV0Vy+qrWFG/jOUNy1nZsIKVDdVUN1SzqnEVqxpqmL9qMT98ewMOGbsEli2HQYMYe8gG/G2vtQfcr1A5G/YZzGb9NmHLAVuy9cBQajhi8C5s0HsjIFTpsWoVyWXLsfnLscnvULdiJcnqFdjyldiqaqy6mmR1NbaqhmTNKmxVDVZbi9XUkqyrxerqwqO+HqtvwBpaHqc3WQZlsSxDffvQ95tn5vvWFkxDXR09eq1fVWsxzFiyigkLVrJsZQ2D+vdh5Cb92WpIH5bWNDB7WS3vz17Oh7OXMXNxqHJeWr3u5ze4TyV7xWrmfYYPYefNB1BZ4NlOnr/n/XXmbx653zBeenA87788k1VpYzkOGNybPQ7dmkNOHMVGQwcWNK62sGQTKut0v/oAuPbl79zxg4Nuhth7mpCEFar39ApCSdolwNaEkrLJwNfM7IW07RYSEpinCKWK9xIGBE85lZDU3kpIKucQevbWmVlC0qnA34CzCJ1tLgFuK8D1XBCP+w6hI8l5hLZ9683M5kl6FjgJuCYuLiNUhQ8nJNQfAkeb2Vs5DnUJIfm/ERhI+Fx/GM9xr6Sh8ZgbEYbc+aKZNds2ycxWxo49VxKusZJQonlb3GQZoar8ckKe9x5wTOzNDmEoo1mpDkFt0al6T0v6JuHLdTrhQ78KSJjZ4a3YN++9px+56Le88dEWLF/WxMBBFey70xyOu+KXeT1HoZRq7PmKuyFRx9K6JTHxW8KyuqUsr69ief0yVtQvZ0XDSqobVlLdWE11Qw01jTXUNNZS21TfYgcTACWNPoly+jSV0aepjDPe609l5f68MnfE6tgP3HwKG819Fe28DQObetK3oZye9Qa1NSRTSV5dHcnaWqyuHquvCwlefT0U+ueyvBz16IHV1vLhMd9YJ+5dHruLzWfNpKy8c5cKPfCbG3jvrZ6rY99973pOuuS7xQ4rpxlLVvHa325nwnu9V8e90+41vD3qM0xfWM3MxauydlrZbGCv1aWI+w4fwrYb9cvbgNqt8fw97/PwDbl+L0J5udh+9GYceOxO7HLQ8E41ZZ/9Zwy88XdUswTrswHsey46eEy+T1My4zS2RmqMQDMbXsw4iknSgYRkb2RXGaJF0jPAnWZ2V5v37Uz3QNK7wGNm9qv4fhtCkfMuqfYQOfbN6+f5yEW/5dn/bbLO8s/tv6DTJ1+lGnvzcc9nw/MOYFntYlauXEL9yqXUr1xOY81KmmpWkaitg7p6VNeA6psob0hQ0ZikRyP0TIieTVDZBD0S0KMRKpuMigRUNBmVTUZ5wihvMiqakpQ1JSlPhOeypiRKJFFTAjUlIJGEpgQ0NUFi7eYrHx7zDR6fmDkMFnxp5+ns8libfy7XJqGePcOjV0/UsxdlvXuj3r1Q796U9emL+vRGfftS1q8v6tcvPvpT1r8/ZQP6owED0cABlA0ciAYMoCyWyj31g1/y+IdbrRv3Lp9w1LW/XWf5+jBbMwCQGRgWn4G090kzEklIWpJkMr43i8+QTMbXybD9W9fdySsvrFti9NnDGtnq9K/GY4XtE0kjYUkSScIx47KkhWFqkunL09cDiYz1SUvtF1/H4yTT90+P10K8ifh+nwn/451X1m1uMOqAWq7Qtqvfb71hX/bbegh7DRvEnlsNZpPePWhsTNBUn6CpIUFTY4LGhvBINIZljY1heVNDkkRjMrxuTNDUlAzbxGWJpvjcmAyvm8JzoikRn9MfRiKRZMGsZSQS2f+P3WCTfux95LYc/JWRDNig5Q5YWb8nyQQkmyDZCInGNc/WBIkmSDaEZ0ttE5+TiYxl6z5syqOUffToOnW+duiv8p04dqmu3540BpJ+ADxsZnOLHUt7xcHYf0gY9qjNf5R0mqRRUk9CD6HDzOw/actnEMaE+kcL++c1afzFsbeyfNm6f+1XVJSx5RYd/8dfW/4nmjWnjKamdWMsVuyt9WmuuDfvvHEDfDq3+diHbh6/l63+ENdsWOifzjlzaDbuLbZoe4Fns5tb9ovPun0zB8lcPH9+SGgylVeITTdZu4Rrna3SBzUh13WqhfXNa26fxYsSWZOvsjLRp285iURIOBOJmJA2k6h1Jn897tdUKhH/Kkg287B1n1nzvqOzLQPoswH6aZs7kObiSaPr0jpTw44NCG0FMtsvLiJjHKU4GOivChVIzcoVWRNGCL9gZ3xSqDPnS/YEq/PHniPuWVlXdSLNxz6zzbEXP0loakrySaf+rjQv0WTMmdN8b/TOKpk0qldm/38nF5WJsjJRXk58FmVlUF4GZeVGeRmUlxnlZUZZfC4vS2Y8ElSUJSlXgoqyJsqUpKKsiXI1UVHWSAVNvPDRSOpq172vAweV02Pl7CyRdQxDoLLQ40Zprylb/Vr1606vK4CaJZ26jWOxmdltFKb9oStRneknpdV/ocX5E8estbOUt9+0ffoPYOCgiqyJY89e5ey909Ise+WDYK3LWL8/Wt+aOJj6unX/c+/Zq5y9d07FrvacohmxVGY99357wqBm495zl2pAmBRPo3AeKbPQqCjee79Xs7HvsXtdESJqnXffaz7uvXavW+vGrnWPlf2eqw3bK/VPrnVrHUfx+OEb9vLrvajPksT06l3OIQese8/XiVctrbfc62GteLLJ1jH6uZf7ZE2+evct56tHLaGiPBkfCcrLklSWJ6koS1BR3kRleYKKiiSVZQkqysOjvDzb/xlZTrzWh5OjraGyH6OyYhz/fnPUOpsfusM47LAxoAooK4ey+KxyKKtMW5Z6VGa8z/aohPLKuG3qGKllFVDeI56vArWid7/9cUOoWbLOODb02cATRufaoDP9tCwmFNdsDKSP97QR65Y+Fty+O83J2r7u4N3ndup2gQB9mmkb2Nlj71uicQP0+s0NjH1u3U4j+x/YwEmXZBt/tXPoWaJxAzQ2E/t+n23gmE4cew038sIz6yY6B3y2kX1++JMiRNQ6R/Qcg+w9Xpy6F8uXJRg4qJzDtn+bw7+0MTqoYBU/+bHvueily9Zt07jvucWNy7kS02naNMLqjjCPxpJEJG0NTKcIHWGgdHsgQ+nGXqpxQ2n25IXSjRtKN/Z/XX4jb7/RY3Xce+3bwAkXn1PssFqU6oGcXFVFWd/BheqBXBCl1nvauc6osyWN3yIMs3MaYRqgvwKY2WGt2LdgveFLdaxDKN3YSzVuKL0xA1NKNW4o3dgb6+up7Nm+gduLoZTbARY4dk8aXZfWqZJGWD249w8JA2A+Rxjce0HuvQqbNDrnnHOt4Emj69I6XdK4vjxpdM45V2SeNLourfMM1++cc8455zotTxqdc84551yLPGl0zjnnnHMt8qTROeecc861yJNG55xzzjnXIk8anXPOOedcizxpdM4555xzLSrNIf2bIfkQWc4554rGzMx/Ebkuq8sM7l1IceDwkvyPoFRjL9W4oXRjL9W4oXRj97g7XinH7lyxefW0c84555xrkSeNzjnnnHOuRZ40Ouecc865FnnS2DqXFTuAdijV2Es1bijd2Es1bijd2D3ujlfKsTtXVN4RxjnnnHPOtchLGp1zzjnnXIs8aXSdlqQzJc0sdhzro5RjTyfJJB1S7DjWRynHnk7SbZJuK3YczjnXbZNGSSdIekHScknr1NFL2lfS25LqJE2UdFTG+n7xP/MVkpZI+rOk8g6I+7b4yzD9cX4pxJ5NS59DZ9Waz6EzaO/3vFjy8T3vwFhL8v+S5pTKz2SpfredK2XdNmkE+gAvAn/IXCFpA+Ap4L/AHsCdwMOStk/b7Fpgb+AI4CTgZODiAseccj+wWdrjptSKEog9U7OfQwlo9nPoRNr7PS+m9n7PO0op/1+STan8TJbyd9u50mRm3foBHBJuw1rLfgjMJHYUisteBq6MrwcDTcChaeu/BSwAygoc723AbTnWd9rY1+NzOBOYmfZ+N2Ah8P1O8L1p6XPoVLGvz/c8vjfgkPi6J/AY4Rd1nyLf304Xe6H+L8m8F8BpwBJgvyJ8Z86M1/MNYBawHLgE6AX8A1gJjAd274jv9fre97Tvx5lxeS3wErAhcArwCbAI+FlHXYc//FEKj+5c0pjLPsBLZpZe5fECsG98vSfhP5yXM9ZvDGzdAfEdK2mRpA8k/VxS+hzinT329SJpD+B54GIzu67Y8US5PofVOmns0PJ3ZTVJvYBHCMnX0WZW0wHxted7vlqRYk/J68+jpG8BfwW+YGavFyTilm0MHA98AfgB8GvC/X2TcD0fUfxS99Z+Py4GLo/LNwMeAE4AjgL+D/idpFGFD9e50pD1l5xjY+C9jGWL4vLU+qVmlshYn1r3cQFjexK4D5hD+A/6T0B/4Bdp5++ssa8XSfsQqpouNLNbix1P1NLnAHTa2FNa+q6k9AEeBxqA482srgNia+/3PKUYsafL28+jpO8CvwGONLPMY3aknsA5ZrYEmCjpYqDGzG6McV4JvC6pTwcn6Ola+/241syeAZB0KyGB3NjMlrLm2g4klJ461+150phdS5PZZ1vfIQ3Gzez+tLcfSkoA10u6OP5V3WljX08bAM8BF3WmpKsVnwN00tjTtPRdSbmZkLx80cwaChjPann4nqd0eOwZ8vXzeCTwdWBfMxvX7qjaZ35MGFMWAhMz3kOo6p3VYVGtrbXfjwlprxcCC2LCmL5so7xF5VyJ8+rp7Baw7l+kG7HmP8MFwJCMHo6p7RfSsd4F+hL+g4bSir01VgD/A06W1LvYweSQ+TlA54+9pe9KyjPAaGD3DoipOW39nqcUO/Z8/Tx+FLf9RiGCbKPGjPeWsSyV9Bbz90trvx+ZcWe7Nv896VzkPwzZvUloXJ3uMOCN+Ppdwl+yB2asXwjMKHRwGUYBNcDi+L6UYm+NRkIbozLgQUmVRY6nOZmfA3T+2Fv6rqTcAfwSeFLSLh0QVzZt/Z6nFDv2fP08zib0rj4tVpm63Fr7/XDOtUG3TRolDZE0Gtguvh8dHz2Au4GBkq6StJOkiwgNpW8EiNUX9wDXSNpH0qHAbwntY5IFjvsvcfyx4ZJOAP4C3JhWJdppY2/menJ9DsSYa4AvERqq3ymp6N/bVnwOQPFjb8/3PJ2Z/Q24CnhW0rYdEHe7vucdGXtH/V9iZlOBzwEXSPpBvq+jldfTaeTru+2ca4Nid98u1oMw1IJleQyP6/cD3gHqCVVDX8zYvx9wO2GIiaWEX2rlHRD304QG3fXAVOBSoGfGNp0y9rZ+Dqw7bM1G8Xpu6gTfn5yfQ2eJPQ/f89XD1sT3VxJKwLYo5v3tTLEX+v8S1h1yZz9C04fTOvo7k/m9jtuPBcakvR+efv0l9N1u8dr84Y/u/pBZZ+4D4ZxzzjnnOoOiV/M555xzzrnOz5NG55xzzjnXIk8anXPOOedcizxpdM4555xzLfKk0TnnnHPOtciTRuecc8451yJPGl23JMkkdYYp2VaTVCHpn5KWxPgOKXZMnZ2kQ+K9GtrO47T4fZA0U9Iv23Me55wrZZ40ug4l6bb4C/qvWdZ1ukSug30FOAU4hjCDzGvFDcdl2BtY53u7viQN9T8OnHOlxJNGVwy1wA8kjSh2IPnWzqnWtgfmmNlrZjbfzBryFVdn1tmmp2uOmS0ys1XFjsM554rFk0ZXDK8Rpvf6U66NspU8Snpe0m1p72dK+o2k6yUtl7RQ0rmSekq6RlKVpDmSzs1yig0kPSRplaS5kn6cca5+kq6O+9dIei/Og5xaPzzGeKqkJyWtAn7XzLVI0oWSpktqkPSxpPPT1o8FfgNsE485s5njpM55iqRnYlyTJB0saYtUHJImSjowY9/t4vUui/flWUm7pK0fLOkuSbMk1UqaLOkCSUrbZmQ877J4no8knbYen9lvJV0naQnw37h8zxhTtaRFkv4laauMY50naXa87meAYdnuU8Y+lZL+ED/HhnhvTsmyaUvfh7WqpxWaE4yRNENSnaQJks7J2KefwvzHn0qqj8f4RVz9aXx+Kf0zjyWQD0laHD+H6ZJ+0tJ1OudcoXnS6Irl/4BjJB2ah2OdR5ifeE/gb/HxMGGe4b2BvwN/k7Rzxn6/IswtuztwBfDHVFIYE6XHgN2ArwGjgOuB+yQdnnGcK4B7gF2Aa5uJ8fuEpPAPwEhCwvwHSWfF9ScAfwZmEqqm927hmn8T4xlNmFf3XsL8xTfH6/kIuEdSZbyeTYBXgYXAgYR5eScDYyVtFI/ZE/gQOB7YOZ7jMsKcvCn3AkuAA+L1/hioaiHWbH4YY9kfOCN+Nv8B/gfsBRwGJIDnJPWK13AcoXr4L/G676eFPzyi3wHfAc4nfI53AXdl+Ryb/T404xbC53YOsBPwa+CK1Gcav0OPA8cSvqM7AacT5tQG2CM+f4W1P/PrgIHAEXGfs4DZrbhO55wrrGJPfu2P7vUAbgOej6/vBd4DyuJ7A76Rtu1a7+Oy54Hb0t7PBP6d9r4MWAE8lrGsCjg349h3Zhz7HuDV+PoQoA4YmLHNP1PnA4bH41zSiuv+FPhjxrK/AtPT3o8BprVwnNQ5z09btndcdkHast3jslFpx34941gCPk4/VpbzXQ08l/Z+OXBmju1b+5m9kOV7cV/Gsp5ADXB8fP8qcHfGNlfGcw5tJp4+QD3w/YzlDwMvtvb7kBb3L+PrrYEksGPGPpcC78fXh8fj7tVMbEPj+kMylo8DxuTz584f/vCHP/LxqMC54vkZMIlQkvXPdhxnXOqFmSUlLQI+yFi2ENg4Y7//Zbz/L/CF+HpvoAcwJ612lrhsasZ+b+YKTtIAQoLwcsaq/wA/ktTHzGpyHSOLcWmv58fnD7IsS13z3sCekqozjtOb0JYSSWXAT4Gvx3h7AZXAJ2nbXwncIulMQqnco2b2bhtjh3Xv2d7Adlni65WKj1D6eW/G+leBC3KcZzvCZ5bt3v88Y1mu70OmvQhJ99sZ348KQgkphJLvKjN7O0d82VwF3CjpKMI9fsLMMuN3zrkO50mjKxoz+0ShF/VvJd2fbRPCL+Z0lVm2a8yyX7ZlLTXHSD9XGaFULVs1cWYHldZ2jrAc52ur9OuzHMvK0p5fALK17Vweny8gJFI/Bt4FVhKaERy9+qBmv5F0NyGZOgz4haQ/mlmqrV9rP7PMe1YG3Emovs+0JMt1tVW2e9/SsXJ9Pqn7egChNLS5c7U5XjO7VdLThHt8KPCUpIfNrDuPLOCc6wS8TaMrtt8TvocXZVm3ENg89UZST0JpU77sl/F+f0JbQIC3gUFALzOblvGY1ZaTmNkKQpu0gzNWHQTMWI9SxvXxNqEt5Zws15NqY3cQ8LSZ/cPM3jOzaawp5VvNzKab2XVmdiKhOvZ7aavX9zN7G9gV+DhLfKk2kxOBz2Tsl/k+0zRC9XS2ez8hY1mu70Omd+LzsCzxfpy2zRBJezVzjNQfH+WZK8xsnpndamanE9o0nhpLrJ1zrmi8pNEVlZmtlHQJoe1cpueB70p6mVDqdTGhqjFfvqTQq/oZQqnO1whVswAvxvP/S9JFhOrgwYSSpTozu7mN5/o98GdJUwlVjocRkq0ftPciWunvhOTj35J+S2hjORQ4ilD9+RqhY8xpsXPSHEKnjX2JHV0k9SN0EHmI0MloEOG+TUw7z/p+Zr8jVFnfJelqQmeR4YROOVeb2XRCR6EHJL0JPAl8Fjgt69EiM6uR9DfgN7HZwvvAScBxwJEZm+f6PmQed5qkfwI3S/opoWq7L6FKeiMzu4LwHXoF+H+xJ/YHhIR6JzO7BVgMVAOfkzQBqDezKkl/j9c3mVA9fwLh81qZ8w4651yBeUmj6wz+wbrtBAEuBMYTfok/RWiX9lYez/trQg/VccAvgJ+b2YMAZmaEXq//IvTWnQQ8Qaiq/Tjr0XK7nlAq9wtCknUR8DMz+0c7r6FVzGwBoeRsMeGaJgN3A1sB8+JmvyG09XuEkAQNJvRET2mKy/5BKIF7BlhAGJA8Zb0+MzP7iJCQ94v7TiT0BO8NLIvbPEyoQv8pIQE7lewl1Jkujse6ilC6+A1CZ50XMrZr9vvQjLMJnZkujvG+AJwBTI/xGuH78iRwA+Ge3wVsGNcnCX80fJWQFL4Xj6sY63jC/esLHBWP55xzRSP/f8g551omaR5whZldVexYnHOuGLx62jnncojV8gcAm7B2D3XnnOtWvHraOedyu5Aw1M/fzOzFYgfjnHPF4tXTzjnnnHOuRV7S6JxzzjnnWuRJo3POOeeca5Enjc4555xzrkWeNDrnnHPOuRZ50uicc84551rkSaNzzjnnnGvR/wfkn+SCaty+gwAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo0AAAFXCAYAAADH4HSZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB/aklEQVR4nO3dd3zddfXH8dc7o033oLRlFyhltGUjQ4QyHIiAMkSGgKLiAEVBUBAoKgiKAxGQJXv8EEQolCFIGbJXoYW2lFJKSzdJmzRJm9x7fn98Pre9vb1Zzb25ucl5Ph73ce/9zvP93pvk5DNlZjjnnHPOOdeckkIH4JxzzjnnOj9PGp1zzjnnXIs8aXTOOeeccy3ypNE555xzzrXIk0bnnHPOOdciTxqdc84551yLygodQK5IMh8+yDnnXAGp0AE4l09e0uicc84551rkSaNzzjnnnGuRJ43OOeecc65FnjQ655xzzrkWedLonHPOOeda5Emjc84555xrkSeNzjnnnHOuRZ40Ouecc865FnnS6JxzzjnnWlSwpFHSA5JM0ri0ZXtKek1SvaR3JR1SqPicc851PT5zmHPrryDTCEr6JtAnY9kGwKPA7cBJwBHAA5LGmtn7HR+lc865rmLWkhqmLKxmxaoEfXuUMmZ4f7bcoE/LOzrnVuvwpFHSJsBvgc8BH6WtOgFYDpwZJ5FOlTSeBpzd0XE655zrGj5cuoKXP65a/b5mVYKX5lQCeOLoXBsUonr6RuBSM5uTsfwzwNO2dt3BU8CeHRaZc865Lmfqwuo2LXfOZdehSaOk04ByM7suy+qhwKKMZYvjcuecc67NzIzqlY1Z11WvbPQ2js61QYcljZI2By4CvtPUJm041vjYiWb1IydBOuec61Ik0a9n9pZY/XqWIbX6T49z3V5HljTuCgwHZkpqlJT61+8pSTcBC1m3VHFD1i19xMzGm5nSH3mN3DnnXNEaPaxfm5Y757LryI4wTwE7Zix7h1Dy+ARwFPDTjPUHAi/nPzTnnHNd1YjBvXltbhWNyVAp1a9nGaOH9fNOMM61UYcljWZWDUxJXxarBT40s3mS7gTGS/oLcB1wOKETTFPV2c4551yLahsSqxPGr44eTq8eBRltzrmi12lmhDGzpcCXCUPxvAWcAhzpYzQ655xrj6q6BgB6lZd4wuhcOxT0pyezLaKZvQTsVqBwnHPOdUGVtSFpHNSrR4Ejca64dZqSRueccy4fKutWATCwV3mBI3GuuHnS6JxzrkurrEuVNHrS6Fx7eNLonHOuy1rVmGTFqgTgSaNz7eVJo3POuS6rqj6UMpaViL5NDPLtnGsdTxqdc851WZW1a9oz+uwvzrWPJ43OOee6LG/P6FzueNLonHOuy1qTNPpwO861lyeNzjnnuqRE0lge2zQO7O0ljc61lyeNzjnnuqTl9Q0kDQQMrPCk0bn28qTROedcl5Sqmu5fUUZpiXeCca69PGl0zjnXJXl7Rudyy5NG55xzXVKVTx/oXE550uicc67LMbM1JY3eCca5nPCk0TnnXJezYlWChoQBPkajc7niSaNzzrkupyqWMvYuL6VnWWmBo3Gua/Ck0TnnXJdTGdszeimjc7njSaNzzrkuJ9We0Qf1di53PGl0zjnX5VTW+nA7zuWaJ43OOee6lJWNSWobEoBXTzuXS540Ouec61JS4zOWl4g+PbwTjHO54kmjc865LiW9PaPk0wc6lyueNDrnnOtSvD2jc/nRoUmjpIslzZBUJ2mhpDslDY/rxkmyjMdbHRmfc8654rdmzmlvz+hcLpV18PmmAacBHwJDgT8CtwJfTNtmo7TXDR0XmnPOuWKXSBrL6z1pdC4fOjRpNLO7097OlvR74O6MbRZ0ZEzOOee6jmX1DRhQIuhf4Umjc7lUsDaNkgYAxwP/y1g+W9IcSfdI2rww0TnnnCtGqarp/hXllJZ4JxjncqnDk0ZJJ0iqAaqALYHj4qr5wKnAEcDJhOrrpyX1ynKM8ZntHzsmeuecc51ZZa1PH+hcvsisY/MtSf2A4cBmwMXAAjM7pont5gDfM7N/tuK41tHX4pxzrnN5csYiFq9YxS6bDGC7of06+vRetOm6tI7uCIOZVQPVwPuSpgNzJe1gZu9mbidpJjCio2N0zjlXfMxsdfX0YB9ux7mcK/Q4jan/yhLrrAjV0lsBH3VoRM4554pSzaoEjclQ4zTQq6edy7kOK2mUVA6MB/4NLCJUT/8GeINQ6vg9YAEwFRgIXATUABM7KkbnnHPFKzV9YJ8epfQoK3SZiHNdT0f+VBmwPfAQMAO4E5gJfMXMkkA58CdC0jgRaAQOMrOaDozROedckVozE4yXMjqXDx3eESZfvCOMc851b898sIRPltczZnh/xm7UvxAheEcY16V5+b1zzrkuwacPdC6/PGl0zjlX9OobEtQ1hD6Vg3p70tjVSTpFUmOejj0ujgG9aT6OX8w8aXTOOVf0qmIpY49S0bu8tMDRuFyS1CjplELH4TxpdM451wWkqqYH9uqB5E0LncsHTxqdc84Vvco6nz6w0CRNknSTpN9KWiSpStIlkkokXShpoaTFki5J26csTg38oaR6SVMlnZa2fjZQCtycbdpgSZ+V9IakWkmvStotY/1ekp6VVCepUtJdkoZmbHOGpLnxGI8Dm+fj/nQFnjQ655wret4JptM4mjCE3r7Az4DzgIeBvsDngLOB8yQdEre/ETgSOI0wLN+vgcslnRrX70GYAORMYKP4SCkBfgf8BNgVqATulVQGIGk48AQwF/gMcBgwBrg/dQBJRwB/Jgz5tzNwL/CHHNyHLqnDpxF0zjnncqkxaVTXhz4Rg3r79IEF9qGZnRtfz5B0FrCZmX05bdnPgIMkTQNOAnYws2mp/SVtC5wB3GRmi2Nzg2VmtiDjXALONLM3ACRdCLwIbA1MB34ELAdOMbNVcZtvAm9J2s/MngV+Dvyfmf0pLb7tgbNyd0u6Di9pdM45V9SW1TVgQImgf4WXhRTY5Iz3C4C3sywbCuxOSPxek1STehBKJ7dpxbks43zz4vOw+DwaeCmVMAKY2WRgWVwHsAPwQsZxn2/Fubsl/+lyzjlX1FLtGQdUlFPinWAKrSHjvTWxrIQ1BVf7ALVZtmlJ0swSWfYpybIsk7ViG5fBSxqdc84VNW/PWLRej8+bm9nMjMcHadutInSGaaupwN6SVrdZkLQTMCCuA3gX+GzGfpnvXeRJo3POuaKWGqPR2zMWFzObCfwDuEHSNyWNlLSTpG9LOjdt0w+BAyRtLGlIG07xN6A/cIukMZL2BW4Hnjez5+I2fwSOlfQTSdtI+hbwzfZfXdfkSaNzzrmilTRbkzR6SWMx+h6h9/L5hFK/p4CTgVlp25wF7EZIHhe39sBmthD4ArAp8CqhF/cU4Ki0bR6Ixz+H0PbyBODcdQ7mAJBZ16jKl2Rd5Vqcc861zvL6Bh55byEAR++4MeWlBS0L8QaVrkvzkkbnnHNFK9WesW+P0kInjM51ef4T5pxzrmhVentG5zqMJ43OOeeKVlVtGG5noLdndC7vPGl0zjlXtHy4Hec6jieNzjnnilJdQ4L6xiQAg3p59bRz+eZJo3POuaKUKmXsWVZCr3L/c+ZcvvlPmXPOuaKU3p5RPn2gc3nnSaNzzrmi5O0ZnetYnjQ655wrSmuSRm/P6FxH6NCkUdLFkmZIqpO0UNKdkoanrd9T0muS6iW9K+mQjozPOedccWhMJKle2Qh4SWMxk7SXpCkqovYFkjaTNFdS30LH0tE6uqRxGnAasD1wGLA5cCuApA2AR4H/AbsSJhV/QNI2HRyjc865Tq6qPpQylgr6VZQVOJriJWkrSbdJmh8LdKZJukLSsLRt+kr6naSZsVDnI0l3S9oxbRtJ+p6k1yXVSlok6SlJh7cQwm+B36fmAZa0n6SJkhZLMkkj8nLh7WBmHwNPAD8pdCwdrUOTRjO728yeNrPZZvYK8Hvgs3H1CcBy4Ewze9fMfge8QkgynXPOudUqa0PSOKBXOSXFU0jVqUjaHngNGAgcA2wLfAfYAPh+3KY38AyhoOesuM1hhEKgS9IOdw1wOXAjsBOwD3APcGUz5x8F7A3cn7a4T4zpvHZe3nqR1LOVm94BfLeYSkhzoWD/nkkaABxPKFkE+AzwdOq/jegp4OCOjs0551zn1tXbM9795tyS43bZNJnn01wNvA8ckfa3dw7wvKSB8f3ZwChgpJktTNv37dQ2kvYjJJmHmtnEtG1mSvpnM+c/GnjWzFakFpjZo8CjbSlhlDQU+DPwZUJe8zpwvJl9EpPeK+O5ygg1mj80syVx31sIBWiLgG8RShCPk3QwcBkwGvgY+LOZXZt22meAIcAehAKubqHDO8JIOkFSDVAFbAkcF1cNJXxo6RbH5ZnHGB+LrVc/8hmzc865zqWqLgy309XaM9795tyT7n5z7nQgcfebc6ff/ebck/JxHklDgHHAnzIKawAws6r48hjgjoyEMds20zISxsxtstkHeKMtcTfhX8BmhKRxN0LztlSh2B+B/Qilo/sTmsXdkrH/kYAIpZ4XSNqWUPp5NSFp/BlwsaSjUjuYWQKYzJra0m6hEL2nHwJ2AQ4CGoDr4vJWF/Ga2XgzU/ojD3E655zrhJJmVKVKGnt3naQxJoi3Aqm2/NsAt+Ypcdya8Hd3egvbjczRNtlsDsxfj/1Wk3QAIVE8xsxeNLMZZnaTmc2R1A84FTjDzJ43szeAU4BDY9V4yifA2XHfmcC5wLVmdrOZzTKzh4G/AN/NOP0CYIv2xF9sOrx62syqgWrgfUnTgbmSdgAWsm6p4oasW/ronHOuG6te2Ugilo0NqOg6SSNwPmCsKURRfH8+cFuhgsqjCmBlO48xBpierSQU2AooB15KLTCzaZKqgO2AGXHxWxmlrWOBsZJOT1tWRqi6T1cP9Gpf+MWl0OM0pn4wEoQ2AeMy1h8IvNyRATnnnOvcUp1g+vUso7y00H/GcuPuN+eWENoOZtacCRgV1+fSB/F52xa2m5mjbbJZSuiE0x6pxLqpda1Rm/G+L/AHYOe0xxjg8xnbDQKWtPIcXUKH/bRJKpd0iaQ9JG0haV9Cu4M3CA1x7wQGSPqLpO0lnQvsyZrqa+ecc47KLtieMXZ6mcG6CZABM3LdKSZ2BJkEnJmtB3DsrApwH3BC7GzS3DbbZRtbOW2bbN4mlPi1x5R47nXiIyTGjcBeafFsR0hUpzVzzMnAKDObmfH4KGO77eK23UZH/otmhPEZHyL8YNxJ+O/kK2aWNLOlhEasnwPeIrQ7ONLM3u/AGJ1zznVyqfaMA7tQ0hhdwtolZ6mq6kua3KN9TickPk9IOljSCEn7SLqRNWMQXgHMAl6U9HVJ20gaK+lXhGFnMLNnCEPt3CvpTEk7Stpa0reAN5s5/1NkdCSJY0LuDOwQF+0gaeemBtI2s/8Scob7JO0taaSkkyVtHpvD/QO4StK+knYldIJ51MxmZDte9AfgiDghyfaSRkv6tqTvp8W5EaHzzaRmjtPlKEunqaIkKVsHMOecc12ImfHAlPmsbEyy/9ZD2Lh/RaFDStfuTpmx08v5hKrqGcAlx+2yad7aM0oaCYwnVL0OAD4CHgSuMLNFcZv+MaajgU0JfRCeBy41sylxGxHGVf4eoYCohlAK95fYkSTbuXsSOqGMM7N34rJxwNNZNj/AzCY1cZyNCMPqfCkuSg25Mz8mm1cCRxHaJT4G/MDMFsd9bwEws1MyjrkfcCmhk00d8A7wOzN7LK4/A/iCmR2WLaauypNG55xzRaO2IcGDU0KH26+O2Yhe5aUFjmgtORvJo4PGaSw4SRcAm5jZ91vcuJOQVEKoFv+emT1f6Hg6UtdoQeycc65bqKwN7Rkryko6W8KYU90hYYz+BMwusplVhgNXd7eEEQo4I4xzzjnXVl24PWO3FGeDuazQcbSFmX1CGPi72/GSRuecc0Wjq08f6Fxn1qqSRkmDCQ1gDyAMltmLMMXfa8DDZvZc3iJ0zjnnosouOBOMc8Wi2ZJGScMk3QDMA86L2z8PTCD06vosoav+u5KOznewzjnnuq+GRJKalY1A1xqj0bli0VJJ4xTg/4B9zCzrWEuxO/sxwIWSNjOzP+c4Ruecc251e8bSEtG3pzfJd66jtfRTt5uZZc61uBYzqwFujmMdbZKrwJxzzrl0qarpgRXllBRVZ1vnuoZmk8aWEsaMbQ2Y2+6InHPOuSxWTx/o7RmdK4hW956WtJOk0Wnvvyzpn5LGS/J6Auecc3lVVZvqOe1JY1chaS9JU4psnMYmSdozXk+XHJ2mLRd1HTAWQNKmhAnK+wLfBX6b+9Ccc865IGlGVb0Pt5NrkraSdJuk+ZLqJE2TdIWkYWnb9JX0O0kzJdVL+kjS3ZJ2TNtGkr4n6XVJtZIWSXpK0uEthPBb4PepKd0k/SAmXSskLZU0QdI2+bn63DOzl4FFwHGFjiUf2pI0bsuaicePBF41s0OAk4Bjcx2Yc845l7K8vpGkhXn6BvTyyq1ckLQ9Yei8gYQOrdsC3wE2AL4ft+kNPAMcBpwVtzkMmAZckna4a4DLgRuBnYB9gHsI8z43df5RwN7A/WmL5wJnAzsShvlrBLLOXZ0PcT7s9rqDMA93l9OWpLEHUB9fjwMeja9nEKbUcc455/Ii1Z6xX0UZZSVdsuZvLSN++UhHXOTVwPvAEWb2vJnNic/fYk2ydzYwCjjIzB40s4/M7G0zuxj4JoCk/QhJ5glmdq2ZvW9mM83sBmCXZs5/NPBsnBUGADObYGaPmdkHZvY2cCEwStKQpg4iaaikOyVVSqqWNEnSxnFdb0k3pK27N/1Ykm6JJa1XSFoK3BKXHyzptVj6OkPSD9L2qYjHXJRWOvvVtJAmAp9LL63tKtrypZwOHC1pc+DzwJNx+UZAZa4Dc84551Iqu0l7xhG/fOSkEb98ZDqQGPHLR6aP+OUjJ+XjPDFxGgf8KVU1nM7MquLLY4A7zGxhC9tMM7OJzWyTzT7AG83E2As4hVCqubSZ4/wL2Az4MrAbcDtrOvr+EdiPUDq6P7A5MTFMcyShEHtv4AJJ2xJKP68GRgM/Ay6WdFTc/sfA7sChwA7AT4HlqYOZ2QLgk3h9XUpbyvgvBu4Ffg88YWavxeVfYE21tXPOOZdzVd1g+sCYIN4KpJK4bYBbR/zyEWb/7tDbcny6rQmJ0vQWthsJ3NSKbVo6TjabA49lLpT0OUJtZm9CSeiXsiW2cdsDCIniiLTEdkZc1w84FfiKmT0fl50CvCdplJnNiNt/Apyd1q7yH8C1ZnZzXD9L0l8IfTjuJySor5vZq3H9h1lCWwBs0ZqbUExaXdJoZg8SPuDdCNl1ylPAz3Mcl3POOQeAma0Zo7FrlzSeT0gYUz2JFd+fX7CI8qsCWJll+WvAzsDngHeBO5sZpWUMMD1bSShh2uNy4KXUAjObBlQB26Vt91ZGUjoWOFNSTepBqCbfKq6/HTgmVl9fKilbFXw9YcrlLqVNbSbMbKGZvWVmybRlL5rZu7kPzTnnnIPahgSrEuHPTletno5tGEexJmFMETAqD20cP4jP27aw3cwcbZPNUkInnLWYWV1sE/k/QkfbnQi1mtmkEuum1rVGbcb7vsAfCIlr6jGG0DQPM3sF2JLQ7nML4AVJZ2YcYxCwpJXnLxrNVk9Lur61BzKz77U/HOecc25tqVLGXuUlVJSXFjia/Jj9u0OTI375yAxClXR6smPA+7N/d2gy+57rx8yWSJpEKFG7N7P6V9IAM1tGGF7vLEkXmdmiZrY5XdIhZvZoE9tk8zZrl/g1RUCiiXVTgO0kDc2Mj5AYNwJ7AU/EeLYjJKrTmjnfZGCUmc1sagMz+5RQ4ni7pHOAbwN/iecoJ5RKTm72qopQS20aM8dG2pVQ1JtquzAKaKCZhqzOOedce6wZ1LvrtmeMLmFNm0alPV/S3E7tcDrwPPCEpMsJJYYbExKgOcCvgSuArwEvSvoloQ9DBXAEsCdwmJk9I+lG4F5JFwD/BVYQOqBcwJpq3UxPxXOsJuliQoI3F9gQOBdYDLyY7QBm9l9JbwH3SUpt+1ngaTObE9snXiXpVEKJ4jXAo2ntGbP5A/C/GMs9hFrZPYEeZvZ3ST+N8b0V78UXiO0oo93i9Xe53KjZ4m4zOyD1IDT+fBnY3Mx2MbNdCMWyLwEP5D9U55xz3dHq6QO7aNV0SuzscjKh8wfx+eQ8dIIBwMymAnsAC4E7CaVvNwOfAn+P26SSv/uA3xFK9h4h9Br+Zdrhvkfo33ASIVd4CTiB0NO4KQ8CG0oam7ZsGHA3IQl7EEgCnzez5Vn2TzmS0PHkcUKidgqhQAvC2JLPE8Z6fJaQ7J3czLEws9cJieBB8XjPxX1mx01WEJLhycAkwv06Pe0QxwB3mVljc+cpRmqiQ9K6G0qzgcPjuEnpy3cGHjKzzXMeXRtIaqpzlXPOuSL20NT5rFiV4LMjBrP5oN6FDqc5OZsKb8QvHynJdZV0ZxRLJjcxs+8XOpZckNSXkOx/1sxmFTqeXGtLw9qhhAG+M5UDTQ66mSLpfElvxamB5kr6a7y5qfXjJFnG4602xOecc66LWdWYZMWq0JxtUO8uXz29WndIGKM/AbOlrjH3NGGUmbO7YsIIbRun8VngaknHm9kHAJK2Bv4a17VkH8IYj68Tip+vB/oB38rYbqO01w0455zrtlLjM5aViL49umYnmO4sVn9fVug4ciWOJtNlR5RpS9L4PeDfwAxJSwgNdDck9H5qce5pM0sf23F6LJK+Lst2C9oQk3POuS4s1Z5xYK9yuk5hlHPFqdVJo5nNAXaVdDCwPaHtxlQze2o9zz2EMMDmWmLbyRLgBeCceF7nnHPdUGVd95g+0Lli0JaSRgDM7EnWzDu9XiQNIEyC/o+0xfMJ0/28Dgwm9Ex6WtIYM6trz/mcc84Vp9VJYzdqz+hcZ9WmpDG2YTyQ0CZxrU40ZvbrrDute4yehOF7ZpHWjsHMppM2d6Wk1wjjRH0F+GfGMcYDF7Ulduecc8UlkTSW13tJo3OdRauTRkknEsZvqieM6ZQ+vo2RMUBnE8coIwyU2Q84qLkxjMysWtJMYESWdeOB8RnH9vF2nHOuC1le30DSQluoARWeNDpXaG0pabyYMDL8r8ysqel8miSpBLgNGAnsb2Y1LWzfizCK/EdtPZdzzrnil6qa7l9RRmmJd4JxrtDakjQOB25Yn4Qxuh4YB3wZ6CFpeFy+2MwSkr5HGNF9KmFeyIuAGmDiep7POedcEVvTCcbbMzrXGbRlcO+ngF3aca5TCWMwvkno9JJ6bBbXlxMG+ZxKSBQbCVXYzZZIOuec65qqUtMH9vaq6a5E0mOSjil0HG0h6do4t3W31pak8Xbgckk/ibO37JP+aGlnM1MTj9lx/dVmNtLMKsxsmJkdaWYz1/O6nHPOFTEzW13SONA7weSFpElx9rXjMpZvKimR3ldA0nhJkzK220rSbZLmS6qTNE3SFZKGNXPOfQnN1O5PW3aVpMmSGiXdkqvry7HLgZ+nz2TXHbUlafw/QhvDPwP/JUwAnno8l/vQnHPOdVcrViVoSIScxXtO59U84JsZy04APmluJ0nbA68RmpMdA2wLfAfYAGhuHukfAneaWfo0iUngGto5nN/6kFQqqcWphmIB17vA1/MeVCfWlqRxy2YeW+U+NOecc91VqpSxd3kpPcu63/SBE2b/oS1/n9vjfmA/SUPTlp0A3NXCflcD7wNHmNnzZjYnPn8LuDLbDpLKgSPI6KtgZj8xs+sI/RpaRdLxkqZKWinpI0lnpq37gqS347r300tSJY2IpatHS3qdMCLMNpJ6S7pa0mJJVZImSNo847QTgaNbG2NX1OovpZl91Nwjn0E655zrXla3Z+xmpYwTZv/hpAmz/zAdSEyY/YfpE2b/4aQ8n7ISeAL4BoCknQhjMf+nqR0kDSF0bP2Tma0z3J2ZVTWx605ABTC5PQFL+gJhcpDrgDGEJHdJXLc58BDwL2AsIYG9TdIeGYe5GDgXGA3MBf4ObA0cAuwJLAYeiiO/pLwO7KNuPJ9lm/6TkTRK0o2SXpT0gqQbJG2Tr+Ccc851T2tmguk+SWNMEG8FUn9XtwFu7YDE8Q7gxPj6RMJ4yk2Oo0xIrkTahByttDlQaWb1bY5wbecD15jZX83s/VjCeUdc9wPgDTMbb2YzzOxvhNLUn2Yc41Ize9LMZhCmNf468HUzey1ONnIa4f5/Jm2fBcCA+OiWWp00Svo88A6hB/VLwCvArsA7kg7KT3jOOee6o8raVCeYbjXczvmEyTJSJVmK78/P83kfBkbGdorHEZLIfKgAVubgOGOAZ5tYtx0hR0n3Ylye7s2016OBHsAnkmok1RBKYFPjRaekkt1e6xN0V9CWcRovBa41szPTF0q6Evgda2fjzjnn3HpZ2ZigtiEMCdxdqqdjG8ZRWVYJGDVh9h9KDhvx82SW9e1mZqsk3UcYT7nGzF6VNK6ZXT6Iz9sCb7XhVEsJHWfaK5VMN7WuNWrTXvcFqoHdsmy3MO31oHjepa08R5fTlurpMcC1WZZfQ2g34JxzzrVbqmq6vET06dE9OsHEhHAG6yZDBszIV8KY5g5gX+DOljY0syXAJODMbO37JDVVffs20FvSZk2sb60pwP5NrJsG7JWxbO+4vCmTgf5AuZnNzHhUp223HTDNzFatb+DFri1JYzVrBuJOtwWwPDfhOOec6+6qUuMz9i6nm/U5uIS1S9FSVdWX5PvEZvYssCFwWSt3OZ2QRD0h6eDYK3kfSTcCP2niHPOB94DPpi+XNFLSzsBgYLCknSWNbObclwI/lHRG3HcvSSfEddcCu8VxJUdJOh04iiZ6dMe4phE6zvwz9rzeUtL+sTf1wLRN96EAwwJ1Jm1JGh8Arpf0xdg1vbekLxF6HP0rP+E555zrblLtGbvb9IGHjfj5bcDJhKFsiM8nx+V5Z2ZLzKyhldtOBfYgVN/eSSjJuxn4lJAXNOUWwriO6W4ktDE8LD7ejMuaOvdjhI4qpxPGTryHMD4kcTSXrxISxSnAmcC3zOzlFi7pBODxeA2paykhtmOMYzl+jdBRqdtSlt7y2TcMo6DfTPgg0ne6Dzi10NP9ScrW898551yRmfjeQpbVN7Dn5oPYaoM+hQ6nLXJWLJrPNoyFFKuupwF7mtmcQsfTWnGsx1PN7OBCx1JIre4IE5PCYyRtDewQF081s1l5icw551y3k0gay+tTJY257wSTTBolJZ2/yrsrJowAZrZM0neATYGiSRoJ/xBkrXbvTtrSexoAM/uANT2nnHPOuZxZVt+AASWC/hW5Sxr/+frHXPXfmcz5tJYRG/TmjAO34ahdN83Z8V3rmdkjhY6hrcyspRlyuoW2jNN4r6Tzsiz/haT/y21YzjnnuqNUz+n+FeWU5qhE8P435vLz+95mzqdhlJXZS2s565+Tuf+NuTk5vnPdRVs6wuxPxnyR0aPAfrkJxznnXHdWWZv76QP/9vTMdZapieXOuaa1JWkcAGTr7FJLGPDSOeeca5fUcDu5ShqTSePDJSvWWW7Ah0tWkEx6B0rnWqstSeMHwOezLP888GFuwnHOOdddmdmaOadzNNxOSYkYsUHvdZYL2HJIn6LoFONcZ9GWpPEa4HJJP5U0RtJoST8jDAR6TX7Cc845113UrErQGEv+Buawevqru2yy1vvU6NmnH9Dc+NHOuUxtGXLnaklDCSPTXxEXrwT+aGZX5SM455xz3UeqPWOfHqX0KGtLmUbzVqxsBKCivIT6hiQjhvTh9ANGeu9p59qoTUPumNlFki4HRsdF75rZuo1FnHPOuTbKdXtGCG0aH357PgAXfWU0x+6+mVdJF5ikx4CbzOyfhY4lFyQ9CtxiZl1+JJn1+VeuHEgCkz1hdM45lyu5bs8I8NpHlcxfVk9ZifjS6OGeMKaRNEmSxdlO0pdvKikhydKWjZc0KWO7rSTdJmm+pDpJ0yRdIWlYM+fcFxgJ3B/fbyDpCUkLJNVLmiHpzFxeZwf4HfBrdYOJ0tsyTmNvSbcClcDLhNHckfR3Sb/KU3zOOee6iVTSOLB37koaJ7z9CQD7bbMhg/p0r7msW2ke8M2MZScAnzS3k6TtgdeAgYS5pLcFvkOYA/r7zez6Q+BOM0vNeJMkJJCHANsBFwC/zUxk80VSaZxXuj2eA3oCB+QgpE6tLSWNvwF2IozXWJ+2/DHgyFwG5Zxzrnupb0hQ15AAclc93ZhIMvGdUDV92E4b5eSYHWX3W8fmrlFn8+4H9ot9FlJOAFqaAeVq4H3gCDN73szmxOdvAVdm20FSOXAEaWM+m1mlmV1nZm+a2exYxfs48NnmTi7peElTJa2U9FF66aSkL0h6O657Pz0BlTQilq4eLel1Qj6zTSwYu1rSYklVkiZI2jxtv89LejOWqC6RtHpWGzMzQi50dAv3rOi15Ut5JHC6mT1H6HiW8i6wVUs7Szpf0luSVkiaK+mvkvpmbLOnpNdiEfW7kg5pQ3zOOeeKVKqUsUep6F3e3oKf4H8fLGXpilX0LCvh8zsMz8kx8233W8eetPutY6cDid1vHTt991vHnpTnU1YCTwDfAJC0EzAM+E9TO0gaAowD/hQTprWYWVUTu+4EVACTmzn2joSE8X/NbPMF4B/AdcAYQpK7JK7bHHgI+BcwlpDA3iZpj4zDXAycS+ijMRf4O7A1ocRzT2Ax8JCkEkllwH3A7cD2wIGse39ep4VEtytoS0eY4cDHWZaXt/I4+wC/J9zYYcD1QD/gWxDaNRBml7kdOInw38gDksaa2fttiNM551yRSXWCGdirB7lqGpaqmj5ou6H07dmmfp8FERPEW1lTMLMNcOvut47ltZPfuS2Pp74D+AXwV+BE4B6gsZnttyaMXDS9jefZHKg0s/rMFbEzyQFAD+BCM7u7meOcD1xjZn+N798Hno+vfwC8YWbj4/sZsR3lT4Hj045xqZk9Gc89Avg6MNTMlsdlpwFVwGfi8fsD95pZau7JtzNiWgBs0UzMXUJbShqnkT2L/irN/NeQYmaHmtldZjbdzJ4ltFs4Im2TE4DlwJlm9q6Z/Q54BTitDTE655wrQpV1uZ0+sL4hweNTFgBw+E4b5+SYHeB8QsKYyppTQ0qen+fzPgyMjO0UjyMkkflQQRiqL5vvALsCpwI/kXREE9tBKF18tol12wEvZSx7MS5P92ba69GEZPUTSTWSagglsL2ArcxsKSGRniLpHkknS+qTcbz6uH2X1pak8XLgKknfI3yRx0n6PSH5u3w9zj2EkMWnfAZ4OqOo+ylCMbFzzrkubHXP6Rx1gnlmxmKqVzbSt2cZ47Yd2vIOBRbbMI5iTcKYImBUPts4mtkqQvXr9UCNmb3awi4fxOdt23iqpYSOM9limBcLjG4G/kLziXIqmW5qXWvUpr3uC1QDO2c8RgETYnzHAV8klK6eA7wtKX0K5UHEKvKurNVfQjO7BzgL+CXQG7gROBb4jpk91JaTShoAnE1ok5AyFFiUseniuDxz//GxIevqR1vO75xzrvNoTCaprg+1obkabuehyaFq+gs7DKMiR20k8+m1k99JAjNYNxkyYEZcn093APsCd7a0oZktASYBZ2YbZib+jc/mbaC3pM1aOIWARDPrpxA65WYzDdgrY9necXlTJhOqn8vNbGbGozq1kZm9bGYXAbsQeomn95bejlbUuha7Nv3nYma3mNmWhERuuJltYWZtKsaW1JPQW2sWYQrC1avaEMd4M1P6oy0xOOec6zyW1TViQImgf0X72x6uWNnIU9MWAnBY8VRNQ5hxLb0ULVVVfUm+TxybjW3I2n+Xm3M6IVF6QtLBsVfyPpJuBH7SxDnmA++R1tQt7nuSpB0kbS3pREIB1T3NnPtS4IeSzpA0UtJekk6I664FdouFS6MknQ4cRRM9umNc0wgdZ/4Ze15vKWn/2Jt6YHx/SeysuwVhiKE+wMy0w+wDPNncDesK1qu4O/6XUSvpUEnbtHa/2APpHkIHmK+ZWXpD24WsW6q4IeuWPjrnnOtCUu0ZB1SUU5KDTjBPvreQ+oYkg3qXs+/IIe0+XkeJnV1OJnS8ID6fnOdOMKuZ2RIza2jltlOBPQh/u+8klOTdDHxK6InclFsISVfKSkLnlZcIJXU/B35lZs0leY8R+jucThjB5R5CyR9m9hGhr8VRhBLJM4FvmdnLLVzSCYShfm5Ou5YSQlvFWkI7ygcJ1dPnA6ea2dsAkgYD+9HyMEVFT1l6y2ffULoLeMnM/hrHWnqL0PW8ETjSzB5uYf8SQvH3WGB/M/s0Y/2PgZ/GkszUsmeAV83s7FbEl63nv3POuU7u1Y8rmblkBVtt0Js9Nx/c7uN957ZXefK9RRz/mc259GtjcxBhq+Ws1mv3W8eWdECVdIeLVdfTgD3NbE6h48kFSb8Etjaz7xQ6lnxrS0njONaMm3QYof5/I2A8oTNMS66Px/gm0EPS8PhINTa5Exgg6S+Stpd0LqETzHVtiNE551yRqcrh9IFVtat4ZsZioKh6Ta+jKyaMAGa2jNBTetNCx5JDy4CLCh1ER2hL45HBhGJogM8D95vZwlgC+YtW7H9qfH4zY/mWwGwzWyrpy4RR5n9AaPN4pI/R6JxzXVfSLG3O6fb3nH586gIaEsaw/j35zIj2l1q63DOzR1reqniY2TWFjqGjtCVpXExI8OYSksaz4vLehLkjm9Wazipm9hKwWxtics45V8RqVjaSSIamRQNzkDSmek1/ZezGlJR4H0nncqktSeM/gTslzSBUTaem0NmZNY12nXPOuVZLlTL27VFKeWn7hiJcVF3Pi7OWAsVdNe1cZ9WWpPEcQinj5sBZZpYaGHNj4IZcB+acc67rWzOod/vbM058Zz5Jgy0G92bHTZsaKtA5t75anTTG4XH+lGX5FTmNyDnnXLdRVZu76QMnvD0fCGMz5mr+aufcGs3WBUhqU/m+pI3aF45zzrnuJFXS2N72jHMra3n9o0oADtvRq6ady4eWGpC8LelPkjIn+l5NUk9J35D0OnB8bsNzzjnXVdU1JKhvDP0o2zvczsOxlHHbYf3Ydni/dsfmnFtXS9XTOxOm65ks6UPgFWAeYYT0wcBo4DOEoXgubuuUgs4557qvVCljz7ISepW3rxNMqtf0YTt5hZdz+dLsT6mZzTWzk4AtCNMC9QW+BBwH7ApMJUwHNMoTRuecc22R3p6xPW0QZy6q4d35ywGvmu4KJP1C0tWFjqMtJB0r6dFCx5FvrfrXzswWmNlfzOxIM9vFzLYzs8+Z2U/M7HGfv88551xb5ao944S3QynjTpsOYIsN+rQ7ru5C0iRJJum4jOWbSkpIsrRl4yVNythuK0m3SZovqU7SNElXSBrWjpj6AWcDf0hbdpqk5yXVSpq9vsfOs38C20j6bKEDyaf21Qc455xz66kyB9MHmhkTVldNeynjephHmN433QnAJ83tJGl74DVgIKHGcVvC9IAbAN9vRzzHAVPNbHbasgrgQeDadhx3vUlq8QtqZkngLuC0/EdUOJ40Ouec63ANiSTVKxuB9g23M3X+cmYtWYEUZoHpKhpvuL6j/j7fD+wnaWjashMICVBzriZM7HGEmT1vZnPi87eAK1MbxY6y78aSyCmSjmzhuEcDE9MXmNmVZvYH4J3WXpSk3WJJap2kJZJuT1u3taTH47qFki6VVJK2fraksyU9KKkO+HZc/mNJs2KJ56uS9ss47UTga5JKWxtnsfGk0TnnXIdbVh9KGUsF/SraMs/E2lKljJ8ZMZjhAypyElshNd5w/UmNN1w/HUg03nD99MYbrj8pz6esBJ4AvgEgaSdgGGtmfVuHpCHAOOBP2ZqnmVlV3O5A4K/AhYSOs5cCt0vao4njCtgLeGO9ryYcZ0PgKeBdYA/goNQxY3L4EFAX130LOBX4WcZhfkEo3RwNPCTp28AZwA+AMcBtwERJm6Xt8xZhauUd2xN/Z+ZJo3POuQ5XWRuSxgG9yilZz04wyaStHmqnK1RNxwTxVmCbuGgb4NYOSBzvAE6Mr08E7gEam9l+a0DA9BaO+yvgQjO7z8xmmdldwJ2EJC2bQUA/YH5rA2/C6cAHZvZDM5tiZpPN7M9x3eeBEcApcd1E4CLWTRofMLN/xLg/iddyRuzHMcvMrgJeIJTKAmBm9UAVofNwl+RJo3POuQ6Xi/aMb8ypZF5VHaUl4stjusRQO+cDRkjIiM8Wl+fTw8DI2E7xOEISmQtjgT9Lqkk9gFOArZrYPlVUvLKd5x0DPNfEuu2A6anS0OhFYCNJ/dOWvZl6IakvsCVwf8a1HMC611IP9Gpn/J1Wm+oEYmPQLxH++7nRzJZJGgFUZXwAzjnnXJOq6to/fWCq1/S+I4cwuE/7564upNiGcVSWVQJGNd5wfUnZd7+XzMe5zWyVpPuA64EaM3tV0rhmdvkgPm9LqJJtSl/gTEJVcbq6JrZfGp8HNnPM1kgl202ta43atNepLvnHAtMytlue8X4gsKSV5yg6rS5plLQ58DZwN3A5oYcUhC/EZTmPzDnnXJeUNKMqVdLYe/2SxsZEkkfeCbWYh3eBqumYEM5g3WTHgBn5ShjT3AHsS6g+bpaZLQEmAWcqywCbkgbEl5OBrcxsZsZjXhPHXUm4B03OQtdKU4DMTiop04BtJQ1MW7Y3MN/MMhPAlEXAAmCzLNeyKLVRzJN6E667S2pL9fSfCTdiMGv/l/AgcGAug3LOOdd1Vdc3koip0YCK9UsaX/rwU5bUrKJHWQlf2GG9hwXsbC5h7VKyVFX1Jfk+sZk9C2xI6wuBTickd09IOljSCEn7SLoR+Enc5lLgx5J+ImkbSTtLOkPS0c0c9ylgrbEOJQ2XtDOwOdAjHmfnZo7xN0J1+zWSRksaIykV0xPAR8AtcfkhwMXAX5o6WOzscylwiaRTYu/r3SWdJ2n/tE33Ad5JTyS7mrYkjZ8Dfh3/E0j3IbBJ7kJyzjnXlaXaM/brWUZ56fo1rX9ociisOnDbofRbz8Szsyn77vduA04mDGVDfD45Ls87M1tiZg2t3HYqoffxQkLp5DTgZuBTwgxymNlDwPGEa5pC6JF9KDCnmUPfwrrD1nyf0MbwYmCj+PrNdXddHdsi4AvATsDrwNOEWexS4ykeQahyfpXQ8egW4I8tXO9VhB7V5wLvAROA3Vh7PMtj4vG6LLV2MhdJ1cCuZvZ+fL2Tmc2KXecfM7MNWjhEXknyiWmcc64IvDmvimmLath8YC8+u2Xb/3SsbEywxyVPsry+kWuO35Uvj+00nWDWfy7EDPlsw9jZSXoKuMHM7il0LK0Vq6ZfBrYzs2WFjidf2vIv3guEXlUpqQztJ8CzOYvIOedcl7a6PeN6doJ5dsYSltc30qdHKQduN7TlHYpQd00Yox9TfKO7bAp8pysnjNC23tPnAZMkbRf3+6WkHYHtCfX4zjnnXLPMbM2c073Xr8dzqtf0F3YYTkV5l518o9uKVd9TCx1HW5jZC4WOoSO0OpM3s9eBPQnjJ31A6GU1A9gzfsDOOedcs+oakqxsDIVo61PSWLuqkf+8uxCAw3bqNNXSznULbRqn0czeJUy5s17inJM/AnYH+puZ0taNIzRWTTfZzHZe3/M555zrXCrj+IwVZSX0Wo9SwqemLaKuIcHAXuXsO3LDXIfnnGtGmyf8lNQbGEpGKaWZzWrF7r2B/wJPErqvZ5P+r2OrenE555wrDu1tz/hQnGv6kDHD6VFWbM3enCturU4aY1vGm4HPZK4idIpp8V9GM7sjHmtcM9ssaG1Mzjnnikt72jMuq2vgmemLga4x17RzxaYtJY23AquAowgjo+dlfBtJswmlmC8A55hZc+M5OeecKyKVtes/feDjUxewKpFkaL+e7LkeQ/U459qnLUnjGMI4jdPzFMt84FTCQJyDgQuApyWNMbOm5ql0zjlXJBoSSWpWJYD1SxonxKrpQ8duRGlJzoZEdM61UlsahLzB2u0Nc8rMppvZP8xsspk9TRixfTDwlcxtJY2XZOmPfMXlnHMuN1LtGUtLRN+ebWtSv6RmJf/7YAngVdPOFUpbksbTgPGSvhrnXdw8/ZHrwMysGpgJjMiybryZKf2R6/M755zLrcq0TjAlatuv7YnvzCdpsOmgXuyy2cA8ROc6C0m/kHR1oePIFUnnSrq20HHkQlu7ng0C/kUYn/HD+Jgdn3NKUi9gK8LE4s4554pcaridgetTNR0H9D5sx41RGxNOl52kSbG27riM5ZtKSqTX4sUavkkZ220l6TZJ8yXVSZom6QpJw9oRUz/gbOAPacuul/ShpHpJ8yRdI6nv+p6jAK4BjpE0otCBtFdbksbbgBXA14H9gf3i43PxuUWSBkvaGRgZ3+8cHz0kfU/S4bEUczfg/4AaYGIbYnTOOddJVdau33A786rqeHV2JQCHe9V0rs0Dvpmx7ATgk+Z2krQ98BowEDgG2Bb4DrAB8P12xHMcMNXMZqctexU4MZ7jeGAc8Md2nKNNJK3f1EVRrDmdCHw7NxEVTluSxh2Ab5vZfWb2vJn9L/3RymMcDrwJ3BDfvxkfGwPlwJ8IUwdNBBqBg8yspg0xOuec64SSZiyrTyWNbfsb/EgsZRw5tC/bDe+X89g6o7mbbNZRg1DeD+wnKX0S7xOAu1rY72rgfeCImBPMic/fAq5MbSTpG5LejSWRU+IkH805mozCIjO7IeYaH5nZM8C1wGebO4ik3WJJap2kJZJuT1u3taTH47qFki6VVJK2fraksyU9KKmOmOxJ+rGkWZJqJb0qab+0fbaS9Jik5fHxsqSRaSFNjNdW1NrypXwLWO8iZwAzuyWzLWJ8zDazq81spJlVmNkwMzvSzGa253zOOec6h+X1jSQtDOw7oFfbOsGkBvQ+vBtUTc/dZLOT5m6y2XQgMXeTzabP3WSzk/J8ykrgCeAbAJJ2Ivyt/09TO0gaQijt+5OZrdMR1cyq4nYHAn8FLgRGEyb1uF3SHk0cV8BehI63TZ17GHAk0GRhlaQNgaeAd4E9gINSx4zJ4UNAXVz3LcLILT/LOMwvgAdj3A9J+jZwBvADwmgytwETJW0Wt/8bsCQec/d43cm0470ObC+pqMeKakvS+BvgT5IOk7SFpI3TH/kK0DnnXPFLtWfsV1FGWUnr//TMWlzDlE+WA12/13RMEG8FtomLtgFu7YDE8Q5C9S/x+R5CbV9Ttibk/y0Nwfcr4MJYQznLzO4C7iQkadkMAvoRhuBbi6TzJK0gjBNdA/y4mfOeDnxgZj80sylxVJY/x3WfJ3SwPSWumwhcxLpJ4wNxRJdZZvZJvJYzzOzxuOwqwnjSJ8TtNwMeiyPBzDCzOzNmyluQtl3RakvS+AiwCyHzngV8HB9z47NzzjmX1fq2Z5zwdsgfxm4ygC2H9Ml5XJ3M+YSJM1LFqakZ187P83kfBkbGdorHEZLIXBgL/FlSTeoBnELo5JpNRXxemWXd3wk5yFeALYHfNnPeMcBzTazbDpieKg2NXgQ2ktQ/bdmbqRex082WwP0Z13JA2rVcA9wUq73PkrRpxnnr43OvZuLu9NpSR3BA3qJwzjnXpa0Zbqf17RnNjIcmzwO6fgeY2IZxVJZVAkbN3WSzkk3nfZzMsr7dzGyVpPuA64EaM3u1uel+gQ/i87aEpmtN6QucSagqTtfUhB1L4/PALDF+CnwKzJBUBTwr6eIm+j2kku1sWtu+oTbtdeq/lWOBaRnbLY/xXSvpceCw+LhY0hfM7IW43aD4vKSV5++UWp00xsanzjnnXJuYGVXrMdzOewuq+WDxCiDMAtOVbTrv4+TcTTabQaiSTk9sDHg/XwljmjuAZwjtD5tlZkvi8DtnSro3s12jpAFmtgyYDGxlZte1JgAzWylpBqE08NVmNk3dn6buyRTg0CbWTQO2lTQwrbRxb2C+mS1vYp9FhOrlzczs4Wbin0XoBHSlpImEdqKppHE7oJpQU1u0mk0aJW0c6/Jpqd1iajvnnHMuXW1DglWJkFe0pXo6NW3gZ0YMZuOBRV2r11qXENo0pqqoU8+X5PvEZvZs7ECyrJW7nA48Dzwh6XLCZBwbE3oazwF+Tej48n+SPiH0Hu5DGKZvvpnd18RxnyL0jL4dwpiRhHaDTxBKGkcBVwAPmVltE8f4G/ATSdcQenmLMBrLlfE4HwG3SPoVoY3hxTQzhI+ZmaRLgUtib+rnCCWHXwD+Z2bPSPozoRnfzHjMHVm7F/g+wCQzSzR1nmLQUpvGj9O64afaLmY+vE2jc865JqWqpnuVl1JRXtqqfcwsbUDvrl3KmLLpvI9vA04mDGVDfD45Ls87M1tiZg2t3HYqoafwQkLnlmnAzYTE7u9xm4cI4yqeTCj9+w+hBHBOM4e+BfiapNQXZRVhbOgnCB1v/h6Pc0ozsS0iJHQ7EXotPw3sGtclCdMU9yGUZt4az9nsuI+x48svgHOB94AJwG6sGc+ynFC9Pw24mzBkUfosMMfEcxU1Zektv2altD8hi26Mr5tU6OprSdl6/jvnnCuwKfOX886C5Wzcv4L9tx7Sqn3emFPJkde+QGmJePmXBzGkb888R5kTORsPKJ9tGDs7SU8BN5jZPYWOJRck7U1IqEcXe0ljs9XTsch1lqQ9Cp0UOuecK06p4XbaUjWdGptxn603KJaEMae6a8IY/ZhQSthVDAJOLfaEEVrXEWYE0Lr6BOeccy5Dqnq6tZ1gEknjkXfCUDtdvde0W1es+p5a6DhyJY4F2SV01DRFzjnnuqFVjUlWrAoFLIN6t264nZc/XMri6pX0KC3hCzsMz2d4zrk2aO2QO5tKqmhuAzNrrmGrc865bqgqljKWlYi+PVpXaZWqmh637YYMaONg4M65/Glt0tjSeEmGV2E755zLkN6esTXzRq9qTPLolDDjWlefNtC5YtPapPGrhG70zjnnXKu1tT3jc+8vZlldA717lHLQdkNb3sE512FamzS+HMc9cs4551pt9fSBrWzPmBqb8eDth9G7R1tmunXO5VtrOsL44IfOOefaLJE0lten5pxuuaSxblWCJ95dCHivaec6o9YkjTkbrNQ551z3sby+gaSFPyIDKlpOGv87fRG1qxL0ryjjc9u0bhBw51oiaQtJcyX1LnQsrSWpT4x580LHkq7FpNHMSrxq2jnnXFulqqb7V5RTWtJy+cNDk+cBcMiYjehZ5n0r803SJEkWHzWSXpH0xULHlQcXANen5qqWNFrSA5LmxWsfV9DosjCzFYRpCS8odCzpfJxG55xzebG6PWMrqqaX1zfw9PTFgFdNd7A/AhsR5mZ+A3hQ0sh8nEhS6xq25vacA4DjgNvTFvcGZhBmnulwklo7xdEdwHGS+uUznrbwpNE551xerB5up3fLSeMTUxeyqjHJkL492WurDfIdWqeXnHRmR/19rjGzBWY2AzgdSAAHA0jaNZZG1kmaLekiSauLgCX9JU41XCtpqqRj0w8c9zlb0oOS6oBvS9pK0mOSlsfHy+lJqqSfSZojqV7SC5J2TVt3SjzmsfG5UtKNLSSjhwJzzOzD1AIze9XMzjWz+1t7k2J18TWSFsXrfUXS2LiuVNJlkhbGe/WYpK3S9h0f7+M5kuYDk1pzf81sFjAXOKS1ceabJ43OOedyzsyoqm39cDupXtNfGbtRq6qyu6rkpDNPSk46czqQSE46c3py0pknddS5zawRaAB6SNoAeAJ4GBgLnAKcCJyZtstS4BvAGOBK4PZUIpXmF8CDwGjgIeBvwBJgD2B34K9AEiAmnRcD5wK7EKYSnCipT9rxhgLHA4cBR8XHqc1c1j6EEtT2uh7Yj1BquSOhhDaV4J1NuD+nEK5rFfBvSek51u6E+bQPAr7VyvsL8Drw2RzEnxM+noFzzrmcW7EqQUMyDL4xqFfztZJLa1by/MwlABy200Z5j62zignirawZtWQb4NbkpDMpGfeX2/J5bknlwFlAf+A54EfAk2Z2RdxkpqSLgAsJCRNm9pu0Q1wv6XDga8A7acsfMLN/pJ1nM+AuM5seF81I2/ZM4Cozuztu+wPgS8AJhKQNoCdwqpktidv8E9gfuLaJS9s84xxtFksNjwd2MrO34+KZGXFfaGaPxu1PIZQQHkxIDCGU4H43rV3lhbRwf6MFwNbtiT+XvKTROedczqXaM/YuL6VnWfN/ah6duoBE0thkYC923XxQR4TXWZ1PSBhTRa2pGdfOz+M5z5NUA9QB5wA/MrM3CaVfR8YOMjVxm5uA9GrXb0p6VdKSuP6LwGYZx38z4/01wE2SHpd0lqRN09ZtB7yUehNLPl+Ly1MWpBLGaD6h9LEpFcDKZta3xmhgWVrCuFpsMzmcteP+FJjO2nFPTyWMUYv3N6oHerUz/pzp0KRR0pGSnpK0TNI64z9K2lPSa7Etw7uSOk09vnPOudarakN7xtRc01/ZcaNWTTXYFcU2jKNYd5g7AaPy2Mbx78DOwKZmNtjMUiV2fQkdMXZOe4wFdgCQ9FngRuA24PNx/eNA5geenigRj789MJHQVm+apH3aEG9Dxnuj+VxmKTCwDcfPJpW8t0dtxvtm72+aQYTq/E6ho0saewP/BS7LXBHr9x8F/kfoxXU78ICkbTo0Quecc+1WWdu6ntPzl9Xx6uwwS2137jVdMu4vSUI1amZyYsCMuD4fPjWzmWa2IGP5ZGCHuG6tR1y/N/COmV0VSyY/oJXVqGY2y8yuNLODgWcJ7SIhlM7tldpOUhmhLeC09b883mbtEr/1MRUYKGnHzBVmtgxYyNpxDwa2pfm4W7q/KdvFbTuFDk0azewOM7sEeDHL6hOA5cCZZvaumf0OeAU4rSNjdM45135r5pxuvj3jI2/Pxwy22rAPO2zUvyNC68wuYe1SrVRV9SUFiOVqYFtJf5e0k6RtY6/l8+L6D4DRkg6VtC2hQ8smLR1U0p8lHSxphKTPETqVpNocXgmcIekbkrYjtFPsCdzVjut4Ctg9vYe1pB6Sdpa0c1w0Mr4fnO0AZvYB8H/AXZIOij3Aj07b/0rg15IOkTQGuAWYBTzZTFwt3d/UEEW7tXCcDtWZ2jR+BnjazNL/y3oK2LNA8TjnnFsPKxsT1DYkgJZLGlO9pg/fceNuWzWdEju7nAy8Hxe9D5yc704w2ZjZx4TewiMINYCvEjrKzImb/Bu4gVDF+gKh+vWBVhy6nNCpZRpwNyEhvDae827g18AVhNK1McCXzaymHdfxCqFTSvqg5RsT2lqm2lveEF8f3syhvkso8LoXmAL8HGiM6/5AqKa/lXCfKoAjzKzJ0uFW3F9izHPMLBe9v3NCa+doHXTSMPr602amtGVPAG+a2blpy34I/MTMts3YfzxwUeZxC3Etzjnn1ragup6nZy6hvFQcNbbpZHD2khWM++MkAJ762f5svWHfDowyL3KW9SYnnVmSxyrpbkXSN4ETzOxLhY6lLSQ9DtxuZncUOpaUzlTS2OofNjMbb2ZKf+QzMOecc61XlTYTTHOlh6lSxtEb9+8KCWNOecKYU3cCk1Rcc0/3Bp6mfVXzOdeZxmlcyLrd5jcEfN5r55wrIpW1rWvPmEoaD9ux+3aAcfkXq4nX6YDbmcXheTpdzJ2ppPEVYFzGsgOBlzs+FOecc+tr9fSBzbRnnLZgOTMWhqZqX9mx+w7o7Vwx6ehxGgfH3kYj4/ud46MHofh4gMJclttLOpfQCea6jozROefc+kskjeX1oX9Ac0njhDg2425bDGLTQUVTa+hct9bR1dOHAzenvU/1XNrSzGZL+jKhG/oPCN3VjzSz93HOOVcUltU3hNGWBf0rsieNZsaEt+cDode0c644dGjSaGa3EMYvamr9S4QxiZxzzhWh1PiM/SvKKS3J3glm8txlzPm0lhLBl8d61bRzxaIztWl0zjlX5CprW27PmJo2cJ+th7Bhv54dEpdzrv08aXTOOZczlXXNTx+YSBoPpwb07sbTBjpXjDxpdM45lxNmljZGY/bhdl6Z/SmLqldSXiq+OHp4R4bnnGsnTxqdc87lRM2qBI3JMDPXwCZKGlO9pvcfNZQBLUwx6FwuSNpC0txiGty7OZI2i9fT4SPie9LonHMuJ1LtGfv0KKVH2bp/XhoSSR6dEnpNH+ZjMxacpEmSLD5qJL0i6Yst71l0LgCujwNmI+lISW9IWi5pmaSnJe1R4BhbLc5b/QTwk44+tyeNzjnncqKl9ozPz1xCZW0DvcpL+fwOwzoyNNe0PwIbAbsCbwAPShqZjxPFMZk7lKQBwHHA7WmLPwUuJozWsicwHXiso0ruJOWi99cdwHfV3DydeeBJo3POuZxoqT1jqmr6oO2H0rtHZ5rFthMar476+1xjZgvMbAZwOpAADgaQtGssjayTNFvSRZJKUzvGyThmSaqVNFXSsekHjvucLelBSXXAtyVtJemxWMq3XNLL6UmqpJ9JmiOpXtILknZNW3dKPOax8blS0o0tJKOHAnPM7MPUAjObZGYPmtn7ZjYN+DkwGNiuqYNI6iPpGkmL4vW+ImlsXFcq6TJJC+O9ekzSVmn7jo/38RxJ84FJLd1fBb+TNC/ei1mSTksL6RlgCNChJaSeNDrnnMuJ1PSBA3uvW9JY35DgiXcXAt5rulnjdRLjNR1IMF7TGa+TOurUZtYINAA9JG1AqAJ9GBgLnAKcCJyZtstS4BvAGOBK4PZUIpXmF8CDwGjgIeBvwBJCsrM78FcgCRCTzouBc4FdgKnAREl90o43FDgeOAw4Kj5Obeay9iGUoGYlqQz4ToxpejPHuR7Yj1BquSOhhDaVQJ9NuD+nxOtaBfxbWivx3x3YCTgI+FYr7u8xwAmE+7ttvMaFqYOZWQKYDHy2mZhzzv/Vc8451271DQnqGpJA9urpp6cvomZlI/0qyth/1IYdHV5xCAnirYDFJdsAtzJeMN5uy+epJZUDZwH9geeAHwFPmtkVcZOZki4CLiQkTJjZb9IOcb2kw4GvAe+kLX/AzP6Rdp7NgLvMLJWgzUjb9kzgKjO7O277A+BLhOTp+rhNT+BUM1sSt/knsD9wbROXtnnGOVJxbA68C1QAi4EvmVl1tgPEUsPjgZ3M7O3U/ciI+0IzezRufwowl1Bi+0TcJgF8N61d5YU0f383A6ab2XNx/UdZQlsAbNHEdeeFlzQ655xrt1R7xh6lJfQuL11nfapq+kujh9OzbN31DoDzCQljqp2a4vvz83jO8yTVAHXAOcCPzOxNQunXkbGDTE3c5iYgvdr1m5JelbQkrv8iIdlJ92bG+2uAmyQ9LuksSZumrdsOeCn1JpZ8vsba1cYLUgljNJ9Q+tiUCmBlluWfADsDewMTgLslDWziGKOBZWkJ42qxzeTwjLg/JZRapsc9PZUwRi3d3/uB0ZLek/QnSftliase6NVEzHnhSaNzzrl2q0rrBJPZNr+6voGnpi0C4DCfazq70IZxFGsSxhQBo/LYxvHvhORpUzMbbGapEru+hM4WO6c9xgI7AEj6LHAjcBvw+bj+cSCzmDk9USIef3tgInAIME3SPm2ItyHjvdF8LrMUGJi50MwazWymmb1qZt+Li49v4hip5L09ajPeN3t/zWw2oaT5AqAf8LCkP2ccYxChWr3DeNLonHOu3Va3Z8xSNf2fdxeysjHJBn16sM/WG3R0aMVhvCUJ1aiZyYkBM+L6fPg0Jk8LMpZPBnaI69Z6xPV7A++Y2VWxZPIDYOvWnNDMZpnZlWZ2MPAsod0ehNK5vVLbxfaGuwPT1v/yeJtmOrikEaEKOZupwEBJO2auMLNlhLaG6XEPJrRDbC7ulu4vZrbCzO4zs+8S2l1mtt3cLh6nw3jS6Jxzrt1WD7eTpRPMhDht4JfHbkRZqf/ZacYlrF2qlaqqvqQAsVwNbCvp75J2krRt7LV8Xlz/AaH69FBJ2xI6tGzS0kEl/VnSwZJGSPocoVNJqs3hlcAZkr4haTtCO8WewF3tuI6ngN3Te1jHHt0HStpS0o6SrgE2BB7NdgAz+wD4P+AuSQfFHuBHS9o5Le5fSzpE0hjgFmAW8GQzcTV7fyWdHHuLby9pFPBV0tpmStqI0BRgUttvyfrzn17nnHPt0phMUl3fCKw73E7lilU8936oQfNe0y0InV1OBt6PS94HTs53J5hs4gDS+wEjgP8BrxI6ysyJm/wbuIFQxfoCofr1gVYcupzQqWUacDchIbw2nvNu4NfAFYQStDHAl82sph3X8QqhU0r6oOV9YgzvAf8hdCY52MzmrHuE1b4LvAjcC0whDNPTGNf9gVBNfyvhPlUAR5g1XTrcivu7DPgh8Ep8DGbt6vOjgcfMbFEzMeeczNpbTd85SLKuci3OOVdMlq5YxRMzFlEiOGanTShJa9N41ytzOO+Bd9hoQAX/O+dASko6dCzijpa7ixuvkjxWSXcrkr4JnGBmXyp0LLkQh/KZAnzPzJ7vyHP7kDvOOefaZXV7xorytRJGgIcmzwNCB5gunjDmlieMuXQnsImk3hk9mIvVcODqjk4YwZNG55xz7ZRqz5g5qPfC5fW8/OGnABzmVdOuQGI18WWFjiNXzOwTQpvIDudtGp1zzrVLZW326QMffns+ZrDlBn0Ys3H/QoTmnMshTxqdc86tt6QZVfVrxmhMl+o1fdhOG68zdqNzrvh40uicc2691axsJJEMnRDTx2ic82ktb31cBcDhO21UiNCccznmSaNzzrn1lmrP2LdnGeVpYzCmShm336g/I4f2K0hszrnc6lRJo6RbJFnG48xCx+Wccy67Ne0ZM6qm41zTh+3opYzOdRWdsff0vcBP0t4vL1Qgzjnnmpcabic9aZyxsJppC6oB7zXtXFfSqUoaozozW5D26ApjKjnn8iiZaGrKWJdvVanhdtKSxlQp4y6bDWSzQb0LEpdzuSCpn6S5kjYtdCytpWCKpD1zfezOmDQeLmmxpLcl/TJOWO6cc+uouepvzN95Fz7ZfATzd96Fmqv+VuiQupW6hgT1jWEM6kG9w3A7Zra6PaNPG9i5SdpY0u2S5kuqlzRL0h3p8zQ7fgI8YWZzIcz5LOn/JH0Ym9CdUtjw1hWnx/s98NtcH7uzJY0TCXMrHgj8CfgZYR5K55xbS81Vf6PqsstJLA7zGicWL6Hqsss9cexAqU4wPctK6FUW/py8M28Zs5fWUiI4dKy3Z+zk7ifMLvJVYHvge0ANUFqogCT1LNS5M8Xp+k4Dbk9b3BP4BDgfWFCAmFp7f+4H9pa0dS7P36mSRjO718weM7N3zOwWQtL4Y2UM8CVpfGaHmYIE7JwrmOXXXJt1efVNN3VwJN1XZe2a9oypX9OpUsa9ttqAof0rChZbsXt1wnt5/fssaRCwF3CWmb1sZh+a2ZNm9n0zq4vbnCJpdnyeK6lG0nWSytOO01vS1bGGsErSBEmbp60/XNLLkqolfSLpGkl90taPlzRJ0jmS5gOTJI2Lf9u/IGlGPO81ksokXSapMpaKfj7tONtJelTSkhjHRElbpq1PHfMASe/FeP4laWAzt2kvYBDwbGqBmc02s5+a2V3Aylbe6zJJv433sE7SO5IOTFv/M0lzYmnvC5J2TVuX+gxOkjQb+DAu3yre65p4X6+S1CstzhXA88BRrYmxtTpV0pjFG0AfYEj6QjMbb2ZKfxQmPOdcR2v48EMWH3kUyeXZ+8glFi/xNo4dJLM9YzJpPPz2fCDMNe3a7tUJ75306oT3pgOJVye8N/3VCe+dlKdT1QC1wFclNVeyOBQ4GTgU+BpwGHBu2vq/A1sDhwB7AouBh2IpHUAFoZp0J+BYYH/gooxz7B7XHwR8K235WcDXgaOBbwOPxZg/A0wAbklLYPsC/wT2jY864J4s1/OreD0HArsAv2zm2vcBJptZe3+hXBzP+SNgDHAekASQdGxcf26MZyowMT2xBoYBJwBHAJ+PzQceB6YBu8XlnyFUSad7HfhsO2NfS2dvLziG8AVZUuhAnHOFlVy5kurLLqPm5luxhoYmtyvdcAglpQWrXetWUtXTqekDX/3oU+Yvq6esRBwyZnghQytKMUG8FUjVnm0D3PrqhPfY47Dtb8vlucysQdJphKTvbEkvAv8BbjazpWmb9gK+a2YzASRdSEgCfytpBCGpG2pmy+P604AqQhLzkpndm3asWZIuIiQ356QtT8Rz1MZjpL4855rZW3HZ08BwM/t1fH8p8GNgJPCemb0GvJY6YIxjsaTNzWxO2rl+bmZvxG1uAA5v5jZtDsxvZn2LYunfWcDXzeyhuPiDtE3OBK4ys7vj9j8AvkRIEq+P21QAp6a1qzwJWGpmP087z0+BJyX9OLZphFB9fmh74s/UqUoaJf1J0p6SRkg6ktCu8bq0G+Cc64bqHpnIwr0/S/X1N2INDZQO3ZA+hx+Wddt+p57awdF1Tw2JJNUrG4E1w+2kek3vt82GDOztfSnWw/mEhDFVe6b4/vx8nMzM7gA2JpSCTSEkMFMkbZK2WWUqYYxeAYZJGgCMBnoAn8Rq0hqgkpBobgWrq43/FatfqwntAzfLCGV6EyOlTE17vQh4N+M9wIbxPP0l/S1WZy8HZsf1med6J+31fEJJalMqaGUVdDNGEtpBPtvE+u2Al1JvzKyRkPxul7bN4lTCGI0Fdkvd83jf/0O47+kNievjspzpbCWNOwAPA/2BOcB1wOUFjcg5VzCNs2dTdfbPqX8x/E5Vj3L6Hnss/X51PiV9+1K+ww5U33QTicVLKN1wCP1OPZW+Z5xe4Ki7h2VxvulSiX4VZTQkkkycEvoFeK/ptottGEdlWSVg1KsT3ivZ47Dtk7k+bywhfAB4QNKvgfcJnT8uTG3SzO59gWpCFWmmhfH5IWAyoeRsEaHK9x8Z22YdWs/M0qsUDGhIW2exHW2q8OsKQhvEM1mTME4F1hp1Pssxmys8Wwps0sz61shF87nM+9MXeBr4YZZtF6W9HkSOa2o7VdJoZl8qdAzOucJLrlxJzeW/p/rmW7BVobNFxW67MvCyyyjbYfvV2/U943T6nnE6yUTCq6Q7WGommIG9yiiReO6DJXy6YhU9y0o4eIdhBY6u+Oxx2PbJVye8N4NQJZ2eaBjwfj4Sxkxmtix2RklvTzdY0tZmlqpS3QNYGLedTCjkKTez9zKPJ2kI4XqONLMpcdmReQp/H+DvZjYxnmfvHBzzbUL1e3vMJJRW7kdIoDNNJyS7D0HoNENo4/loM8ecTKh2nmNmq5rZbru4bc50qupp55yrnziRhfvsy/LrrsdWraJ0ww3Z4I9XsMGD/14rYUznCWPHq1zdCSZUQz8Uq6YP3n4YfXt2qvKIYnIJa6qkYU1V9SW5PpGkYZIel3RMrELeVtJvCFWfE9M2rQOul7STpIMInTauBjCzacC/gH/Gns5bSto/9qYeSKiqrgS+H3v7fh34Qa6vJfoAOFbSDpL2Bf6Yg2NOArZIa2MJgKSdJe1MqJrfPL7P2og3Vrv/Bbha0hHxPhwiaVzc5ErgDEnfkLQdcC2hOvuuZuK6k9AO9B5Ju0saqdBLPbMjzD7Ak62/3JZ50uic6xQaP/qIJcccy5LvnkZiwQJUXk6/E49n2PPP0usbx64e0sV1DunTB9Y3JHhiaqia9rmm11/s7HIyoYqY+HxyrjvBRMsJJWkXAK8CLwNfAI41s6fStltESGAeBR6Mz+nNxk4g9OS9mdCb92ZCblEfex2fAHyRUFX8/Xi+fDiLkGC/TuhA0u7zmNl84AngmIxVb8bHRoQk+k3CtTXlAsI9vI5wH1bfv9gB5teE6vXJhA7AXzazmmbiqgbGERLHJ+N+vyGt046ksYT2ng+3eKFtoK7Sx0SS95dxrgglV60KVdH/uHlNVfSuuzDg8sso32GHAkfnskmacd/keSQMPj9qQ16bXcn373idfj3LePX8g6ko77Ylvzn7zyZfbRjbQmG2k/FmNqKQcRSSpM8Rkr3RxZRkSLoO+NjMcjorjNchOOcKpv7Rx6i64AIa54dSqtIhQxjwi3Po9Y1veMliJ1Zd30gi/vkcWFG+utf0F0YP7/QJYyKRpLS081eyFTphdIGZPSfpakKp4ieFjqc1FH55fghcletje9LonOtwjR9/HHpFP/+/sKC8jH5f/zr9LvgVJf36FTY416JUe8Z+PctY2ZjkqWmho2xnrpp+8q63+O+9U1j2aR0DBvfiwK+P4eDjdy50WK4ImNnVhY6hLWKJ6GX5OLYnjc65DpNctYqa3/8hVEWvDMOfVeyyMwN+f7lXRReR9PaMT763kPqGJIP79OCzI4e0sGdhPHnXWzzw91dXv1/2ad3q9544Ni1O53tLgcNwnUjnL6N3znUJ9Y8/zqLP7svya/+OrVxJ6QYbMPgPl7PBhIc8YSwya2aCKV/da/qQMcMp76TVvk/e807W5f+9d0oHR+JccfOSRudcXjXOncuys39O3XPPhwXlZfQ95mj6X3ihV0UXITOjKo7RWCLx7PuLgc43oHdjY5K3nv6A/02YRnVVfdZtln1aVzRtHJ3rDDxpdM7lRbKhIVRF3/SP1VXRPXfZmYGXX0b56NEFjs6tjw+XruCdBctZmQh9NB6bMp+GhDG8fwV7bDG4wNEFC2ZXMum+Kbz17Owmk8WUAYN7ecLoXBt40uicy7n6J56g6lcX0DgvVF2WbrABA849h17HH+e9oovUh0tX8NKcyrWWTXg7DAv3lR03oqSkcJ9rw8pGXpo4nRcnzmDOjCWkBkYpKREjdxzGwKF9eOWJD9bZ78Cvj+ngSJ0rbp40OudypnHuXJb9/Bzqnn0uLCgro+/RR9F//HhK+vUtbHCuXaYurF7rfXVdA7MWh/GHD9uxMFXTs6cu5Jn7p/L2C3Oor10zpfCgDfuwx+e3Zv+jRjNww/C922Srwd572rl28sG9nXPtlmxooOaKP1J9w41rqqJ32jFURY8dW+Do3PpKmrF0xSrmLavjvUVrT1DxwvuLmfDmJwzu24PXfnkQJSUdU827Ynk9/3vwPV55YibzP6pavbysvITtd9+E/Y4czfaf2bTJEu08t2H0YnTXpXlJo3MOgEQyQWlJ2wdmrn/iP7Eqeh4ApYMHM+Ccn9PrxBO8KroIrUokWbC8nnnL6vlkeT2rEtnHmJ48pwqAPUYMznvCmEwmmfbKPJ7797u899o8GlYlVq8bvvkA9vziNuz71e3p3a+ixWN5G0bXFpL6Ae8Be5nZ3ELH016S+gDTgX3MbE5b9/ek0blu7rap13DX1LtZUlfFkF4DOX70cZw0+oct7tc4dx7LzjmHumeeDQvKSmNV9MVeFV1kltc38ElMFBfXrCS9zqZEMLRvT3qWlfBRZR0AlStWMWdpLQDH7r5Z3uKqWryCZ+6bwuv/ncXShWtKOnv2KmPHfbZg3DGjGbHDsLydv6uTtDFhHuSDgUGEGU9eAL5tZqsKGVsn8hPgiVTCKGlf4A/AdkA5YS7pC83s8cKF2HpmtkJSam7u77Z1f08anevGbpt6DX997drV75fUVa1+31TimGxsZMUVf2T5DTdi9aF3as8dxzLw95d7VXSRSJqxuGbl6tLE6pWNa63vWVbCxv0r2GRABcP7Vawef3GjfiuYurCaSe+FGWC2HNKHA7cdmtPYEokkbz09i/89NI2Z7ywgkViTwm4+agP2+fK27PnlbelR4X++cuB+oAb4KrAI2Bo4GijYXJCSeprZykKdP52kEuA04KS0xSuAvwDvACuBbwIPStrezD7sgJhycX/uAN6W9DMzq25x6/Tzd5V2gN6m0bnmJS3J3OqPmP7pFD6oms7sZR/yzJz/0ZBMrLPtkF4Deezrz62zvP7JJ0NV9MehliZURZ9NrxNP9KroTm5lY4JPltfzybJ65lfX05BY+/flwF7lbNK/go0HVLBB7x5ZP8/735jL356eyYdLVgBhQO9rT9gtJ/Et/KiSSfdN5c1nPlxrqJy+/Xuyy7gtGXfMGIZvMSgn58qjnP0Q/Gi/G0qufva7eZt/WtIg4FNgJzN7u4ltTgHGx8dvgYHAncDpZtYQt+lNKHn7OqHk7TngR6mqT0mHA+cDOwDVwL+Bn5vZirh+PDAOmAj8FJgN/BJ4Gvgi8DdgY+A24McxjtOASuA0M/tPPM52wJ+BPQgFYi/EOD6M68fFYx4IXANsCvyHUKpa1cT17wM8AQwws3V/Ua7ZbmmM5b4m1pfFe3gKsAEwE/iJmf03rv8ZcCYwFHgj3t834rpT4r4XAr8GepjZxpK2Aq4EDgCWE/4BOMfM6uJ+ZxJKSTcGFgM3mtn4tJimEUpI723qurLxf9Wc62KqVy1n+qdTeL/yPWYv+4CPls/hk5r5LF7xKQ3JxpYPQChxTG/j2DhvHsvOOZe6Sc+EDcpK6XvkkfT/9cU+QHcnZWYsr29k3rI65i2vZ+mKVWtVO5cKhvULSeLG/Svo06P5Pwf3vzGXs/45ea1lj05ZwP1vzOWoXTddrxgbVjby8qMzeHHidD6avvZQOVuPHca+h2/HLgdsRWlZwQq+OtyP9rvhJEKSNepH+90wA7jk6me/e1seTlUD1AJflTS1maRoKHAycGh8fSvwMSF5A/h7XH4IISk8F3hI0q5mlgQq4rZTgU3i9hcB56SdY3dgHnAQkASGx+VnEZLR4YRkcxTwLPAZ4HTgFkkjYgLbF/gnIfEsAy4G7gH2zLieX8XrMeBeQoJ6bhPXvg8wual7E0sijwJ6A683cQxiLCcBPwKmEBLoZDzGsXH994C3gJ8BEyVtnUqsgWHACcARQKOkHsDj8Z6cDfQnJNe/B86QtEc85nGsue9bZcT0OvDZeA9azUsanStCjYlG5lTPYkblVD6omsFHy2Yzt3oeC1YsYvnKFc3u27u8gqG9B7Nxv414a8FUahvXHQA5VdKYbGhgxZ/+zPLrb1hTFT12DAN//3vKd/Sq6M4mkTQW1axk3rI6Pllez4pVa/+t61Vewsb9e7HJgAqG9etJWQsdWOpWJZi5uIb3F1Zz8cPvsqyuYa31AkYM6cPTZ41rU5wfvbeISfdN4e3/ZQ6V05vdD96acUeNYeDQomwX266Sxpgw3kpIaJT2fHI+EkdJJxKSuCTwIqHk7WYzWxrXnwLcDGxjZjPjsu8AvzWz4ZJGANOAoWa2PK4vB6qAg8zspSznPBr4vZltFd+PJyR6G5lZbVw2jlAquIuZvRWXPQoMN7Nd4vthwAJgBzN7L8t5hhBK2LYwszlpx9wtrRTvPOBwM9urifvzV2BjMzs6y7oaoCdQB3zdzB5r4hi9CKWiXzezh7KsfxF42szOi+/LgA+B35jZ9WmfwWZp7SpPAn6YHncsFX0S6AMcCVwCjG4m4f0jsLWZfTXb+qZ4SaNzndiy+kqmVb7DzMr3+HDZB8xZ/jHzaxayuPZTGrNUK6eUqIQhvQYwvO9QNu23CSMGbMnWA7dl1ODRDO+92eqqx8w2jSnHjz6Olf99isrzfrW6Krpk0MDYK/rEDhtexbWsriFV7VzHguqVNCbX/ud5g97lbDygFxv3r2BQr/Ks1c61qxr5YPEKZiysZsbCamYuqmHGwmrmVtXR3P/iBny4ZAXJpLU4uHdt9Uqef/A9Xnn8/exD5XxtB7b7zKbd/bt1PmsSRViTOJ5PqJ7NKTO7Q9JDhBK+fQlVpGdJ2t3M5sXNKlMJY/QKMEzSAGA00AP4JON71YtQsvVSrDa+lFCaOIiQd2TmHtNTCWOGqWmvFxGq09PfA2wIvCepfzzPFwglk6kv0mZAei/h9InI5xNKSZtSQWi3mM3OQD9CgnaLpL2baNM4kpBcPtvEcbYDfpd6Y2aNkl6Ly1MWZ/TcHgvsFhPXFBHu+0aE5PES4IOYbE8AHs0oWauP27eJJ43O5Vhbh65pTDTy4fIZzKicyqyq95m9bDbzqj9h4YrFVK/K9nt0jT7lFQzvM4SN+23M5v03Z6sBIxk5eHu2HrA9FWUt/z5IdXa5a+rdfFpTyeC+g/jusCMYd9mLLP5v/D1WWkrfI79Gv19fTGn//q2+LpcfZkZlXQOfLKtn3vI6Pq1du/SvrEQM79dzdaLYq3zNd7F2VWNMCGt4f1E178fn5pLD8lKx5ZA+zKusW6fkMlXS2FTCmEwmmf7aPJ594F3ee3XtoXKGbTaAPb84kn2/ugN9+rc8VE5X96P9bighVL9mEqGqOi9tHGMJ4QPAA5J+DbxPaDN4YWqTZnbvS6iSztawdWF8fgiYTKheXUSo8v1HxrZZf9Gl2k2mxdGQts5ioppKDq8A9iIkvrPjsqmEdpbNHbO5/1KWEqp2s8WWSqTflLQX8APWrnJPyUU718z705dQapqtt+KimHjuSOgV/yVCSeULwNfSthsELGlrIJ40OpcjLQ1ds7RuMdM+fYeZVdOYvWwWc5d/zCc1C1lSW0nCmv5bUKoShvQexEZ9h7JZv80YMWBLRg7allGDxjCk1/B2d0A58r9JPn9TDYnFy1CfRlh1DXUN4fdqz9E7MPAPv6d8p53adQ7XPo3JJAurU72d66hrWPv70qdHKZvEJHFo357UNySYuaiGR2ZXrk4OZyyqZm4cMiebVHK4zdB+jBrWj22G9mXUsL5ssUEfyktLVrdpTK8zNeD0A0auc6xlS1bwzP1TefXJD/g0Y6icsftszrijxrDlGB8qJ93Vz343GdswbsPaiYYB7+ezU8zqE5ktkzSfUMWZMji2r0vNw7gHsDBuO5nQnq68mSribYAjzWxKXHZknsLfB/i7mU2M59k7B8d8m9CmsiUCmqr6mUkordyPkEBnmk5Idh+C1dXTuwOPNnO+yYQ2pnOaGhopLp9IaB95B/CypMFmliqt3Q7IWqXeHE8ancuB9GrekoStHrrmkQ8eATMWrFjCioam/2AD9OvRm2F9hrBJv43ZvP8WbD1wG7YZtANbDdiW8tIe7YovmUhgy5Zhy5aRXLYMW74cq66m9qGHqH144urtbEVoD6nevRl4/nn0Oumb3b26MK/MrMmkf8WqRj6JQ+IsrK4nvbOzgCF9ejCoVzn1KxN8UlXHE3PmM2NhNe8vqmkxOdxqSF+2GdY3Joh92WbomuSwKanOLn97eiazF9cwYsO+nH7AyNXLE4kkkyd9yPMPvcfMt9cdKmevQ0ax16Hb0dOHymnOJWRv03hJrk8U2wTeBtxIqLI14ERC1efP0jatA66PPXyHEDpYXA1gZtMk/Qv4Z1z/PrA5IdE6n9CWrxL4vqQ/EZKhH+T6WqIPgGMl/RcYTOgU0l6TgC0kDTezBQCSvgfMJSR7PQjXuh+hQ806zKxW0l+AqxV+2N8BtgXqzGwSoQf09ZLeJnSEOYtQnX1XM3HdSei8c4+kSwltSHcA9jWzcyR9BdiCUCW+AjiW0L6zKl5DD0Lp8NltvB+dL2mU9EvgDELX/ieA75nZomZ3yrPa6uX07lec1XLFGnsh425INFC5cgmf1i+hqn4pVSs/paq+kmWrqli+chnVq5ZTvaqamlU1rGioZUVDLfNrFvPj1zZg3KSlULUMBg5k0rgN+Ovuaw+4X1ZSyoa9B7FR3+Fs1j+UGm4zcHu2HTSGQb2GAKFKz1asCEne/GXYtNeoX15Nsno5trwaq6nBampIrqghuWIFtqIWq42PujqSdfVYfXysXImtWoWtanmc3mQJlMSyDPXuRZ9TTs75vc2XVfX19KgonirOD5eG8Q6rqmsZ2K83o4f1Y4vBvfm0dlWsdq6nKq3TycqGBJ+uWEn9ygTLahtYsKyemYtqmFfVdHLYo7SErTbsw8ihfRk1tN/qJHGLDXo3mxw2Z8C0Jez93Fx2iPM3D9hoIIuG9GXSfVN4Y9LaQ+X06d+TXfYfwbijx7LRlp1nqBxLNqKSTvenD4Crn/3ubT/a7waIvacJSVi+ek8vJ5SkXQBsSSgpmw4ca2ZPpW23iJDAPEooVbybMCB4ygmEpPZmQlI5j9Czt97MEpJOAP4KnErobHMBcEserueseNzXCR1JziC07VtvZjZf0hPAMcBVcXEJoSp8BCGhfgc41MxebeZQFxCS/+uAAYTP9cfxHHdL2jQec0PCkDtfNrOaJo6FmVXHjj1XEK6xnFCieUvcpIpQVX4JIc97Ezgs9maHMJTRnFSHoLboVL2nJX2L8OU6ifCh/wVImNlBrdg3572nHzz3t7z83iYsq2pkwMAy9tx+Hkdc/qucniNfijX2XMW9KrGSyvqlVNYvoXLlEqrqK6laWcnylVUsW5VK/Gpi4reCFatqqW2sp66hnpWJhpZPkDT6NJbSK1FCn8YSTnqzHz3K9+a5T0atjv1zG89gw0+eR9tvxYDGnvRpKKFnvWF1dasTvNVJ3sp6rH7l6iSv2d4HuVBWinr0xGpreeewE9eJe+yEO9h4zmxKSjv3UCf//M3fefPVnqtj32WPlRxzwfcLHVazPly6gheuupWpb/RaHffoXevo8bUjWLGykUXLV7JweT2LlteztHoli+OjKankML3UcJuYhJblcMq8J+96iwf+3tzfxTVD5Xz2K9uy60Fbd6qhcuyZ8fDy31DtUqz3BrDn6Wj/8bk+TdGM09gaqTECzWxEIeMoJEmfIyR7o7vKEC2SHgduN7M72rxvZ7oHkt4AJpjZRfH9VoQi57Gp9hDN7JvTz/PBc3/LEy+u2+bmC3sv7PTJV7HG3nTcCxhyxj5U1S6mpnopddWfsqpmGQ21NTTWriBZVw91K6F+FVrVSOnKBGUNCXo2ih6N0LMReiREeSOUN9qa5wSUNiYpa4SyRJKSBqM0kaS0MUlJIokak5Q0JlAiiRoT0JiARNpzmncOO5GH380cBgu+ssMsxk5o88/l2kqEevREFT1RzwpKKnqiXr1QRS/UuxclvXuj+Cjp2xf17YP69qWkXz/Urz8l/fqi/gPQgP6UDBiABgygpGdPAB790a94+J0t1o177EcccvVv11m+PsxsdUt6MzAsPgMZ79PXp++bbd2TV9zEM0+uW2K038GN7PPjk0kkw7aJpIWHGWZGwiCZNJJmJC20FzSDhFlYnoQk4XXCwuwpyaSRJJQCJ9O3Ta034rHj/slk3D4eK7XcjEH/fYJXnlm3ucFO+9RxqbbOdgMpAfqUlLD14N6MHNybLQb2YtMBFWzcpyeDK8qwhNHQkKBxVYJEQ5LGhkR8hNeJ+DrRmFqWJNG45n14vebR2Jgg0Zgk2ZgkkTASjUnmf1RJojH779hBG/Zm94O2Zv+jxjBo2HoMlWOGJRNgjZBogGQDJFaF19YIydTyxoxtGtcsSzaueZ+M+yUaIZnAZjxEybQJ69T52gEX5Tpx7FIj3HvSGEj6EfCAmX1S6FjaKw7G/mPCsEdt/qek0ySNknoSeggdaGbPpC3/kDAm1E0t7J/TpPG8w29mWdW6AyGXlZWw2SYd/89fW34TzZlXQmPjujEWKvbW+ri5uDfuvHEDfPxJ07FvunH8Xrb6Q1yzYb5/OufNo8m4N9mk7QWeTW5u2S8+6/ZNHCRz8YIFyaxJTGmZGD5sTQnbOlukFsSQmh1Spom4mzpYS/fLDJYuSazV3i9FJaJ3n1KSiZBgJhIxMc2ybWfz58N/TbkSYMkmHhaesbXfx9fK+zd9XQbQewN0Tps7kDbHk0bXpXWmhh0bENoKZLZfXEzGOEpxMNCL8hVIbfXyrAkjhD+wH36UrzPnSvYEq/PH3kzcc7Ku6kSajn12m2MvfJLQ2Jjko079XWlaotGYN6/pMSw7K0saK6pbN2NPOglKSkVJiShd/QwlJeFRWmKUlobnkhIL70uS4b2SlJUk4vskpUpQWpKgVAnKShopLUlQpkZK1cik97alvm7d+zpgYCk9auZmiSz/DEAl4Sag+Dq+T3ut+uXr7CuA2qWduo1joZnZLeSn/aErUp3pJ6XV/6HF+RPHr7WzlLO/tL379WfAwLKsiWPPilL22OHTLHvlQqriJP1927367iBW1q/7y33t2NWeU2Sx7oHa+oG8NnVgk3HvNrYGECbFU8WyiU4y3/Gbb1U0Gfsuu6zpHNA5ol3jjTebjnvXGHf6LV4r/ia+QmpqOZb1Bij9ldK2zdxG4ecjfvw8/3IvVmZJYip6lfK5vTJmudHap8782ig9Dq1depj61aK0jZsrN23pK/mfZ3tnTb569SnlmEOWUl6apCw+SkuSlJUmKC9JhOfSBKWlScpLw/uykvBe6cGtHW32i1YzbR2V/RgVZZP59ytj1tn8gG0nYweOB5VBSSmUxGeVQmmPtGVlYVlJeXhdWr72stLUNql15WueVZq2rAxKe64+X2uGnLLfD4HapeuMY0PvDTxhdK4NOtNPyxJCcc1QIH28pw1Zt/Qx7/bcfl7W9nX77/JJp24XCNC7ibaBnT32PkUaN0DFb/7OpP+s2+h/78+t4pgLso2/2jn0LNK4ARJNxL7Xvqv4aieOvZbreOrxdZO2ffZtYM8f/7wAEbXOwT3HI3uT/76/O8uqEgwYWMqB27zGQV8ZivbLW8VPbux5Onr64nXbNO55emHjcq7IdJo2jbC6I8xDsSQRSVsCsyhARxgo3h7IULyxF2vcUJw9eaF444bijf1fl1zHay/3WB337nuu4sjzTyt0WC1K9UBOrqikpM+gfPVAzoti6z3tXGfU2ZLGbxOG2fkmYRqgPwOY2YGt2DdvveGLdaxDKN7YizVuKL4xA1OKNW4o3tgbVq6kPPZkLybF3A4wz7F70ui6tE6VNMLqwb1/TBgA8z+Ewb0XNr9XfpNG55xzrhU8aXRdWqdLGteXJ43OOecKzJNG16X5pLLOOeecc65FnjQ655xzzrkWedLonHPOOeda5Emjc84555xrkSeNzjnnnHOuRZ40Ouecc865FnnS6JxzzjnnWlScQ/o3oTUT1zvnnHN5Ymbmf4hcl9VlBvfOpzhweFH+IijW2Is1bije2Is1bije2D3ujlfMsTtXaF497ZxzzjnnWuRJo3POOeeca5Enjc4555xzrkWeNLbOxYUOoB2KNfZijRuKN/ZijRuKN3aPu+MVc+zOFZR3hHHOOeeccy3ykkbnnHPOOdciTxpdpyXpFEmzCx3H+ijm2NNJMknjCh3H+ijm2NNJukXSLYWOwznnum3SKOlISU9JWiZpnTp6SXtKek1SvaR3JR2Ssb5v/GW+XNJSSX+UVNoBcd8S/ximP84shtizaelz6Kxa8zl0Bu39nhdKLr7nHRhrUf4uaUqx/EwW63fbuWLWbZNGoDfwX+CyzBWSNgAeBf4H7ArcDjwgaZu0za4G9gAOBo4BjgPOz3PMKfcCG6U9rk+tKILYMzX5ORSBJj+HTqS93/NCau/3vKMU8++SbIrlZ7KYv9vOFScz69YPYFy4DWst+zEwm9hRKC57Frgivh4ENAIHpK3/NrAQKMlzvLcAtzSzvtPGvh6fwynA7LT3OwGLgB92gu9NS59Dp4p9fb7n8b0B4+LrnsAEwh/q3gW+v50u9nz9Lsm8F8A3gaXAXgX4zpwSr+dEYA6wDLgAqABuAqqBKcAuHfG9Xt/7nvb9OCUurwOeBoYAxwMfAYuBX3TUdfjDH8Xw6M4ljc35DPC0maVXeTwF7Blf70b4hfNsxvqhwJYdEN/hkhZLelvSLyWlzyHe2WNfL5J2BZ4EzjezawodT9Tc57BaJ40dWv6urCapAniQkHwdama1HRBfe77nqxUo9pSc/jxK+jbwZ+BLZvZSXiJu2VDgq8CXgB8Bvybc31cI1/MehS91b+3343zgkrh8I+CfwJHAIcBPgUsljcl/uM4Vh6x/5BxDgTczli2Oy1PrPzWzRMb61LoP8hjbROAeYB7hF/QfgH7AeWnn76yxrxdJnyFUNZ1tZjcXOp6opc8B6LSxp7T0XUnpDTwMrAK+amb1HRBbe7/nKYWIPV3Ofh4lfR/4DfB5M8s8ZkfqCZxmZkuBdyWdD9Sa2XUxziuAlyT17uAEPV1rvx9Xm9njAJJuJiSQQ83sU9Zc2+cIpafOdXueNGbX0mT22dZ3SINxM7s37e07khLAtZLOj/9Vd9rY19MGwH+AcztT0tWKzwE6aexpWvqupNxASF6+bGar8hjPajn4nqd0eOwZcvXz+HngG8CeZja53VG1z4KYMKYsAt7NeA+hqndOh0W1ttZ+P6amvV4ELIwJY/qyDXMWlXNFzquns1vIuv+RbsiaX4YLgcEZPRxT2y+iY70B9CH8gobiir01lgMvAsdJ6lXoYJqR+TlA54+9pe9KyuPAzsAuHRBTU9r6PU8pdOy5+nl8L257Yj6CbKOGjPeWsSyV9Bby70trvx+ZcWe7Nv876VzkPwzZvUJoXJ3uQODl+PoNwn+yn8tYvwj4MN/BZRgD1AJL4vtiir01GghtjEqA+ySVFziepmR+DtD5Y2/pu5JyG/ArYKKksR0QVzZt/Z6nFDr2XP08ziX0rv5mrDJ1zWvt98M51wbdNmmUNFjSzsDI+H7n+OgB3AkMkPQXSdtLOpfQUPo6gFh9cRdwlaTPSDoA+C2hfUwyz3H/KY4/NkLSkcCfgOvSqkQ7bexNXE9znwMx5lrgK4SG6rdLKvj3thWfA1D42NvzPU9nZn8F/gI8IWnrDoi7Xd/zjoy9o36XmNn7wBeAsyT9KNfX0crr6TRy9d12zrVBobtvF+pBGGrBsjxGxPV7Aa8DKwlVQ1/O2L8vcCthiIlPCX/USjsg7scIDbpXAu8DFwI9M7bplLG39XNg3WFrNozXc30n+P40+zl0lthz8D1fPWxNfH8FoQRsk0Le384Ue75/l7DukDt7EZo+fLOjvzOZ3+u4/SRgfNr7EenXX0Tf7RavzR/+6O4PmXXmPhDOOeecc64zKHg1n3POOeec6/w8aXTOOeeccy3ypNE555xzzrXIk0bnnHPOOdciTxqdc84551yLPGl0zjnnnHMt8qTRdUuSTFJnmJJtNUllkv4haWmMb1yhY+rsJI2L92rTdh6nxe+DpNmSftWe8zjnXDHzpNF1KEm3xD/Qf86yrtMlch3sKOB44DDCDDIvFDYcl2EPYJ3v7fqStKn/c+CcKyaeNLpCqAN+JGlUoQPJtXZOtbYNMM/MXjCzBWa2KldxdWadbXq6ppjZYjNbUeg4nHOuUDxpdIXwAmF6rz80t1G2kkdJT0q6Je39bEm/kXStpGWSFkk6XVJPSVdJqpQ0T9LpWU6xgaT7Ja2Q9Imkn2Wcq6+kK+P+tZLejPMgp9aPiDGeIGmipBXApU1ciySdLWmWpFWSPpB0Ztr6ScBvgK3iMWc3cZzUOY+X9HiMa5qk/SVtkopD0ruSPpex78h4vVXxvjwhaWza+kGS7pA0R1KdpOmSzpKktG1Gx/NWxfO8J+mb6/GZ/VbSNZKWAv+Ly3eLMdVIWizpX5K2yDjWGZLmxut+HNg8233K2Kdc0mXxc1wV783xWTZt6fuwVvW0QnOC8ZI+lFQvaaqk0zL26asw//HHklbGY5wXV38cn59O/8xjCeT9kpbEz2GWpJ+3dJ3OOZdvnjS6QvkpcJikA3JwrDMI8xPvBvw1Ph4gzDO8B/A34K+SdsjY7yLC3LK7AJcDv08lhTFRmgDsBBwLjAGuBe6RdFDGcS4H7gLGAlc3EeMPCUnhZcBoQsJ8maRT4/ojgT8CswlV03u0cM2/ifHsTJhX927C/MU3xOt5D7hLUnm8nmHA88Ai4HOEeXmnA5MkbRiP2RN4B/gqsEM8x8WEOXlT7gaWAvvE6/0ZUNlCrNn8OMayN3By/GyeAV4EdgcOBBLAfyRVxGs4glA9/Kd43ffSwj8e0aXAd4EzCZ/jHcAdWT7HJr8PTbiR8LmdBmwP/Bq4PPWZxu/Qw8DhhO/o9sBJhDm1AXaNz0ex9md+DTAAODjucyowtxXX6Zxz+VXoya/90b0ewC3Ak/H13cCbQEl8b8CJaduu9T4uexK4Je39bODfae9LgOXAhIxllcDpGce+PePYdwHPx9fjgHpgQMY2/0idDxgRj3NBK677Y+D3Gcv+DMxKez8emNnCcVLnPDNt2R5x2Vlpy3aJy8akHfuljGMJ+CD9WFnOdyXwn7T3y4BTmtm+tZ/ZU1m+F/dkLOsJ1AJfje+fB+7M2OaKeM5Nm4inN7AS+GHG8geA/7b2+5AW96/i6y2BJLBdxj4XAm/F1wfF4+7eRGybxvXjMpZPBsbn8ufOH/7whz9y8SjDucL5BTCNUJL1j3YcZ3LqhZklJS0G3s5YtggYmrHfixnv/wd8Kb7eA+gBzEurnSUuez9jv1eaC05Sf0KC8GzGqmeAn0jqbWa1zR0ji8lprxfE57ezLEtd8x7AbpJqMo7Ti9CWEkklwDnAN2K8FUA58FHa9lcAN0o6hVAq95CZvdHG2GHde7YHMDJLfBWp+Ailn3dnrH8eOKuZ84wkfGbZ7v0vM5Y1933ItDsh6X4t4/tRRighhVDyXWlmrzUTXzZ/Aa6TdAjhHj9iZpnxO+dch/Ok0RWMmX2k0Iv6t5LuzbYJ4Q9zuvIs2zVk2S/bspaaY6Sfq4RQqpatmjizg0prO0dYM+drq/Trs2aWlaQ9PwVka9u5LD6fRUikfga8AVQTmhEcuvqgZr+RdCchmToQOE/S780s1davtZ9Z5j0rAW4nVN9nWprlutoq271v6VjNfT6p+7oPoTS0qXO1OV4zu1nSY4R7fADwqKQHzKw7jyzgnOsEvE2jK7TfEb6H52ZZtwjYOPVGUk9CaVOu7JXxfm9CW0CA14CBQIWZzcx4zGnLScxsOaFN2v4Zq/YDPlyPUsb18RqhLeW8LNeTamO3H/CYmd1kZm+a2UzWlPKtZmazzOwaMzuaUB37g7TV6/uZvQbsCHyQJb5Um8l3gc9m7Jf5PtNMQvV0tns/NWNZc9+HTK/H582zxPtB2jaDJe3exDFS/3yUZq4ws/lmdrOZnURo03hCLLF2zrmC8ZJGV1BmVi3pAkLbuUxPAt+X9Cyh1Ot8QlVjrnxFoVf144RSnWMJVbMA/43n/5ekcwnVwYMIJUv1ZnZDG8/1O+CPkt4nVDkeSEi2ftTei2ilvxGSj39L+i2hjeWmwCGE6s8XCB1jvhk7J80jdNrYk9jRRVJfQgeR+wmdjAYS7tu7aedZ38/sUkKV9R2SriR0FhlB6JRzpZnNInQU+qekV4CJwL7AN7MeLTKzWkl/BX4Tmy28BRwDHAF8PmPz5r4PmcedKekfwA2SziFUbfchVElvaGaXE75DzwH/F3tiv01IqLc3sxuBJUAN8AVJU4GVZlYp6W/x+qYTquePJHxe1c3eQeecyzMvaXSdwU2s204Q4GxgCuGP+KOEdmmv5vC8vyb0UJ0MnAf80szuAzAzI/R6/Reht+404BFCVe0HWY/WvGsJpXLnEZKsc4FfmNlN7byGVjGzhYSSsyWEa5oO3AlsAcyPm/2G0NbvQUISNIjQEz2lMS67iVAC9ziwkDAgecp6fWZm9h4hIe8b932X0BO8F1AVt3mAUIV+DiEBO4HsJdSZzo/H+guhdPFEQmedpzK2a/L70ITvEToznR/jfQo4GZgV4zXC92Ui8HfCPb8DGBLXJwn/NHydkBS+GY+rGOsUwv3rAxwSj+eccwUj/z3knHMtkzQfuNzM/lLoWJxzrhC8eto555oRq+X3AYaxdg9155zrVrx62jnnmnc2Yaifv5rZfwsdjHPOFYpXTzvnnHPOuRZ5SaNzzjnnnGuRJ43OOeecc65FnjQ655xzzrkWedLonHPOOeda5Emjc84555xrkSeNzjnnnHOuRf8PoKbaYO4IIHQAAAAASUVORK5CYII=\n",
"text/plain": [
"