-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcapm.py
45 lines (33 loc) · 1.46 KB
/
capm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pandas_datareader as pdr
from pandas_datareader import data, wb
from datetime import date
import numpy as np
import pandas as pd
risk_free_return = 0.05
def capm(start, end, ticker1, ticker2):
#Get stock data
stock1 = pdr.get_data_yahoo(ticker1, start, end)
#Get market data
stock2 = pdr.get_data_yahoo(ticker2, start, end)
#Resample for monthly data
return_s1 = stock1.resample('M').last()
return_s2 = stock2.resample('M').last()
#Create a dataframe with the adjusted close
data = pd.DataFrame({'s_adjclose' : return_s1['Adj Close'], 'm_adjclose': return_s2['Adj Close']}, index=return_s1.index)
#Calc the stock and market retuens by computing log(n)/log(n-1)
data[['s_returns','m_returns']] = np.log(data[['s_adjclose', 'm_adjclose']]/data[['s_adjclose', 'm_adjclose']].shift(1))
#Drop null values
data = data.dropna();
#Generate covarience matrix
covmat = np.cov(data["s_returns"], data["m_returns"])
#Calc beta from matrix
beta = covmat[0,1]/covmat[1,1]
print("Beta from formula: ", beta)
#Calc beta from regression
beta, alpha = np.polyfit(data["m_returns"], data["s_returns"], deg=1)
print("Beta from regression: ", beta)
#Calc expected return
expected_return = risk_free_return + beta*(data["m_returns"].mean()*12-risk_free_return)
print("Expected Return: ",expected_return)
if __name__ == "__main__":
capm("01 01 2016", "10 10 2019", 'S', "^GSPC")