-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
74 lines (62 loc) · 2.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: utf-8 -*-
# filename: main.py
import re
import jieba
import numpy as np
from flask import Flask, jsonify, request
from keras.layers import Embedding, Dense, Bidirectional, Conv1D, GRU, BatchNormalization, Activation, Dropout,MaxPool1D
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from sklearn.externals import joblib
from Attention import Attention
import tensorflow as tf
global graph,models
graph = tf.get_default_graph()
class Region(object):
def __init__(self):
self.tokenizer = joblib.load('tokenizer_final.model')
self.model = self.cnn_rnn_attention()
self.restr = r'[0-9\s+\.\!\/_,$%^*();?:\-<>《》【】+\"\']+|[+——!,;。?:、~@#¥%……&*()]+'
def cnn_rnn_attention(self):
model = Sequential([
Embedding(20000 + 1, 64, input_shape=(80,)),
Conv1D(64, 3, padding='same'),
BatchNormalization(),
Activation('relu'),
Bidirectional(GRU(128, return_sequences=True, reset_after=True), merge_mode='sum'),
Attention(64),
Dropout(0.5),
Dense(2, activation='softmax')
])
model.load_weights('model.h5')
return model
def prdected(self, text):
resu = text.replace('|', '').replace(' ', '').replace('ldquo', '').replace('rdquo',
'').replace(
'lsquo', '').replace('rsquo', '').replace('“', '').replace('”', '').replace('〔', '').replace('〕', '')
resu = re.split(r'\s+', resu)
dr = re.compile(r'<[^>]+>', re.S)
dd = dr.sub('', ''.join(resu))
line = re.sub(self.restr, '', dd)
seg_list = jieba.lcut(line)
sequences = self.tokenizer.texts_to_sequences([seg_list])
start = 0
pred = []
for i in range(int(len(sequences[0]) / 80) + 1):
data = [sequences[0][start:start + 80]]
data = pad_sequences(data, maxlen=80)
pred.append(self.model.predict(data).tolist()[0][1])
start += 80
return 1 - np.mean(pred)
models = Region()
server = Flask(__name__)
@server.route('/pos_neg', methods=['post'])
def reg():
content = request.values.get('content')
if (content is not None) and (content != ""):
with graph.as_default():
result = jsonify({"result": models.prdected(content),"status":"1"})
else:
result = {"result": "", "status": "0"}
return result
server.run(host='0.0.0.0', port=5000, debug=True, use_reloader=False)