forked from coder2hacker/Explore-open-source
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CountedB-Trees.cpp
284 lines (239 loc) · 9.77 KB
/
CountedB-Trees.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#include <bits/stdc++.h>
using namespace std;
// This can be changed to any value -
// it is the order of the B* Tree
#define N 4
struct node {
// key of N-1 nodes
int key[N - 1];
// Child array of 'N' length
struct node* child[N];
// To state whether a leaf or not; if node
// is a leaf, isleaf=1 else isleaf=0
int isleaf;
// Counts the number of filled keys in a node
int n;
// Keeps track of the parent node
struct node* parent;
};
// This function searches for the leaf
// into which to insert element 'k'
struct node* searchforleaf(struct node* root, int k,
struct node* parent, int chindex)
{
if (root) {
// If the passed root is a leaf node, then
// k can be inserted in this node itself
if (root->isleaf == 1)
return root;
// If the passed root is not a leaf node,
// implying there are one or more children
else {
int i;
/*If passed root's initial key is itself g
reater than the element to be inserted,
we need to insert to a new leaf left of the root*/
if (k < root->key[0])
root = searchforleaf(root->child[0], k, root, 0);
else
{
// Find the first key whose value is greater
// than the insertion value
// and insert into child of that key
for (i = 0; i < root->n; i++)
if (root->key[i] > k)
root = searchforleaf(root->child[i], k, root, i);
// If all the keys are less than the insertion
// key value, insert to the right of last key
if (root->key[i - 1] < k)
root = searchforleaf(root->child[i], k, root, i);
}
}
}
else {
// If the passed root is NULL (there is no such
// child node to search), then create a new leaf
// node in that location
struct node* newleaf = new struct node;
newleaf->isleaf = 1;
newleaf->n = 0;
parent->child[chindex] = newleaf;
newleaf->parent = parent;
return newleaf;
}
}
struct node* insert(struct node* root, int k)
{
if (root) {
struct node* p = searchforleaf(root, k, NULL, 0);
struct node* q = NULL;
int e = k;
// If the leaf node is empty, simply
// add the element and return
for (int e = k; p; p = p->parent) {
if (p->n == 0) {
p->key[0] = e;
p->n = 1;
return root;
}
// If number of filled keys is less than maximum
if (p->n < N - 1) {
int i;
for (i = 0; i < p->n; i++) {
if (p->key[i] > e) {
for (int j = p->n - 1; j >= i; j--)
p->key[j + 1] = p->key[j];
break;
}
}
p->key[i] = e;
p->n = p->n + 1;
return root;
}
// If number of filled keys is equal to maximum
// and it's not root and there is space in the parent
if (p->n == N - 1 && p->parent && p->parent->n < N) {
int m;
for (int i = 0; i < p->parent->n; i++)
if (p->parent->child[i] == p) {
m = i;
break;
}
// If right sibling is possible
if (m + 1 <= N - 1)
{
// q is the right sibling
q = p->parent->child[m + 1];
if (q) {
// If right sibling is full
if (q->n == N - 1) {
struct node* r = new struct node;
int* z = new int[((2 * N) / 3)];
int parent1, parent2;
int* marray = new int[2 * N];
int i;
for (i = 0; i < p->n; i++)
marray[i] = p->key[i];
int fege = i;
marray[i] = e;
marray[i + 1] = p->parent->key[m];
for (int j = i + 2; j < ((i + 2) + (q->n)); j++)
marray[j] = q->key[j - (i + 2)];
// marray=bubblesort(marray, 2*N)
// a more rigorous implementation will
// sort these elements
// Put first (2*N-2)/3 elements into keys of p
for (int i = 0; i < (2 * N - 2) / 3; i++)
p->key[i] = marray[i];
parent1 = marray[(2 * N - 2) / 3];
// Put next (2*N-1)/3 elements into keys of q
for (int j = ((2 * N - 2) / 3) + 1; j < (4 * N) / 3; j++)
q->key[j - ((2 * N - 2) / 3 + 1)] = marray[j];
parent2 = marray[(4 * N) / 3];
// Put last (2*N)/3 elements into keys of r
for (int f = ((4 * N) / 3 + 1); f < 2 * N; f++)
r->key[f - ((4 * N) / 3 + 1)] = marray[f];
// Because m=0 and m=1 are children of the same key,
// a special case is made for them
if (m == 0 || m == 1) {
p->parent->key[0] = parent1;
p->parent->key[1] = parent2;
p->parent->child[0] = p;
p->parent->child[1] = q;
p->parent->child[2] = r;
return root;
}
else {
p->parent->key[m - 1] = parent1;
p->parent->key[m] = parent2;
p->parent->child[m - 1] = p;
p->parent->child[m] = q;
p->parent->child[m + 1] = r;
return root;
}
}
}
else // If right sibling is not full
{
int put;
if (m == 0 || m == 1)
put = p->parent->key[0];
else
put = p->parent->key[m - 1];
for (int j = (q->n) - 1; j >= 1; j--)
q->key[j + 1] = q->key[j];
q->key[0] = put;
p->parent->key[m == 0 ? m : m - 1] = p->key[p->n - 1];
}
}
}
}
/*Cases of root splitting, etc. are omitted
as this implementation is just to demonstrate
the two-three split operation*/
}
else
{
// Create new node if root is NULL
struct node* root = new struct node;
root->key[0] = k;
root->isleaf = 1;
root->n = 1;
root->parent = NULL;
}
}
// Driver code
int main()
{
/* Consider the following tree that has been obtained
from some root split:
6
/ \
1 2 4 7 8 9
We wish to add 5. This makes the B*-tree:
4 7
/ \ \
1 2 5 6 8 9
Contrast this with the equivalent B-tree, in which
some nodes are less than half full
4 6
/ \ \
1 2 5 7 8 9
*/
// Start with an empty root
struct node* root = NULL;
// Insert 6
root = insert(root, 6);
// Insert 1, 2, 4 to the left of 6
root->child[0] = insert(root->child[0], 1);
root->child[0] = insert(root->child[0], 2);
root->child[0] = insert(root->child[0], 4);
root->child[0]->parent = root;
// Insert 7, 8, 9 to the right of 6
root->child[1] = insert(root->child[1], 7);
root->child[1] = insert(root->child[1], 8);
root->child[1] = insert(root->child[1], 9);
root->child[1]->parent = root;
cout << "Original tree: " << endl;
for (int i = 0; i < root->n; i++)
cout << root->key[i] << " ";
cout << endl;
for (int i = 0; i < 2; i++) {
cout << root->child[i]->key[0] << " ";
cout << root->child[i]->key[1] << " ";
cout << root->child[i]->key[2] << " ";
}
cout << endl;
cout << "After adding 5: " << endl;
// Inserting element '5':
root->child[0] = insert(root->child[0], 5);
// Printing nodes
for (int i = 0; i <= root->n; i++)
cout << root->key[i] << " ";
cout << endl;
for (int i = 0; i < N - 1; i++) {
cout << root->child[i]->key[0] << " ";
cout << root->child[i]->key[1] << " ";
}
return 0;
}