-
Notifications
You must be signed in to change notification settings - Fork 5
/
ort-trace.py
233 lines (208 loc) · 8.42 KB
/
ort-trace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#
# tool to analyze onnxruntime trace files
# for example:
# python ort-trace.py -skip-first --provider --type-in-name -l 50 trace.json
#
import argparse
import json
import logging
import re
import os
import sys
import pandas as pd
logging.basicConfig(level=logging.INFO)
_log = logging.getLogger(__name__) # pylint: disable=invalid-name
def get_args():
parser = argparse.ArgumentParser(description='onnxruntime bench tool')
parser.add_argument('strings', metavar='N', type=str, nargs='+', help='strings')
parser.add_argument('--name', help='filter list')
parser.add_argument('--csv', help='save intermidiate data to csv')
parser.add_argument('--webgpu', help='webgpu kernel timestamps')
parser.add_argument('--cov', help='tag coverage list')
parser.add_argument('--exclude', help='ops to exclude, ie. If')
parser.add_argument('--exclude-provider', help='providers to exclude')
parser.add_argument('-l', type=int, default=20, help='list top N items, default=20')
parser.add_argument('-v', action='store_true', help='verbose')
parser.add_argument('--nodes', action='store_true', help='show top N nodes')
parser.add_argument('--shapes', action='store_true', help='group by shapes')
parser.add_argument('--dtypes', action='store_true', help='group by dtypes')
parser.add_argument('--type-in-name', action='store_true', help='add dtype to op_type')
parser.add_argument('--provider', action='store_true', help='group by provider')
parser.add_argument('--mem', action='store_true', help='sort by memory usage')
parser.add_argument('--skip-first', action='store_true', help='skip first inference')
parser.add_argument('--pct_kernel', action='store_true', help='use kernel time for pct')
args = parser.parse_args()
if args.exclude:
args.exclude = args.exclude.split(",")
if args.exclude_provider:
args.exclude_provider = "|".join(args.exclude_provider.split(","))
return args
def clean_json(s):
s = re.sub(",[ \t\r\n]*}", "}", s)
s = re.sub(",[ \t\r\n]*\]", "]", s)
return s
def json_to_df(profile_path, exclude, webgpu_timestamps, verbose):
entries = []
op_index = -1
webgpu_acc = 0
with open(profile_path, "r") as f:
# data = json.load(f)
data = json.loads(clean_json(f.read()))
if type(data) == dict:
data = data['traceEvents']
if not webgpu_timestamps:
# make a pass and get webgpu kernel timestamps
webgpu_timestamps = {}
for item in data:
dur = item.get("dur")
if dur is None:
continue
cat = item.get("cat")
if cat not in ["Api"]:
continue
name = item['name']
i = name.rfind("_")
name = name[:i]
webgpu_timestamps[name] = dur
for item in data:
dur = item.get("dur")
if dur is None:
continue
ts = item.get("ts")
if ts is None:
continue
cat = item.get("cat")
if cat not in ["Node", "Op", "Api"]:
continue
arg = item.get('args')
if not arg:
continue
provider = arg.get("provider")
provider = str(provider).replace("ExecutionProvider", "")
op = arg.get("op_name")
if op:
name = item['name']
if not name.endswith("_kernel_time"):
continue
name = name.replace("_kernel_time", "")
op_index += 1
if exclude and op in exclude:
continue
dur = item['dur']
kernel = item['dur']
parameter_size = float(arg.get('parameter_size'))
activation_size = float(arg.get('activation_size'))
output_size = float(arg.get('output_size'))
input_type_shape = arg.get('input_type_shape')
input_dtype = str(list(input_type_shape[0].keys())[0])
input_shape = str([list(i.values())[0] for i in input_type_shape])[1:-1]
# output_type_shape = arg.get('output_type_shape')
if provider == "Js" and webgpu_timestamps:
if op == "MemcpyToHost":
# dur -= webgpu_acc
# webgpu_acc = 0
pass
else:
w = webgpu_timestamps.get(name)
if w:
kernel = w['time']
# next line will substract the kernel time from memcopytohost
# webgpu_acc += w['time']
# print(f"{name}, {op}, {provider} not a kernel")
if provider == "WebGpu" and webgpu_timestamps:
w = webgpu_timestamps.get(name)
if w:
kernel = w
e = {
"name": name, "dur": dur, "kernel": kernel, "op_type": op, "provider": provider,
"parameter_size": parameter_size, "activation_size": activation_size,
"output_size": output_size, "shape": input_shape, "dtype": input_dtype,
"ts": ts
}
entries.append(e)
df = pd.DataFrame([f for f in entries])
df['count'] = 1
return df
def main():
args = get_args()
webgpu_timestamps = None
if args.webgpu:
with open(args.webgpu, "r", encoding="utf-8") as f:
webgpu_timestamps = json.load(f)
webgpu_timestamps = {i["name"]: i for i in webgpu_timestamps}
# get ops info from chrome trace into a data frame
df_list = []
for fname in args.strings:
try:
print(fname)
df = json_to_df(fname, args.exclude, webgpu_timestamps, args.v)
if args.v:
print(fname, len(df))
df_list.append(df)
except Exception as ex:
print(f"{fname}: {ex}")
sys.exit(1)
df = pd.concat(df_list)
df_list = None
# df contains all ops
digits = 1
top = args.l
if args.skip_first:
# if we want to skip the first infererce, trim the data frame
first_name = df['name'].iloc[0]
second = df.index[df['name'] == first_name][1]
df = df[second:]
pd.set_option('display.max_colwidth', 120)
pct_field = "kernel" if args.pct_kernel else "dur"
df2 = df[['dur', 'kernel', 'count']].sum()
df['pct'] = (100 * df[pct_field] / df2[pct_field])
mem_field = "output_size"
sort_by = mem_field if args.mem else pct_field
extra_fields = [mem_field] if args.mem else []
if args.provider:
extra_fields.append("provider")
if args.exclude_provider:
df = df[~df['provider'].str.contains(args.exclude_provider)]
if args.type_in_name:
df['op_type'] = df['op_type'] + "." + df['dtype']
if not args.nodes:
fields = ["op_type", "dur", "kernel", "pct", "count"] + extra_fields
groups = ['op_type']
if args.dtypes:
groups.append('dtype')
fields.append('dtype')
if args.shapes:
groups.append('shape')
fields.append('shape')
if args.provider:
groups.append('provider')
df1 = df[fields].groupby(groups).sum()
if args.mem:
df1[mem_field] = df1[mem_field] / df1['count'] / 1024 / 1024
df1 = df1.sort_values(by=sort_by, ascending=False)[:top]
df1['csum'] = df1['pct'].cumsum()
df1['avg'] = df1['dur'] / df1['count']
df1['avg_kernel'] = df1['kernel'] / df1['count']
print("\n--Top ops by total runtime")
print(df1.round(digits).to_string(index=True))
else:
fields = ["name", "op_type", "dur", "kernel", "pct", "count"] + extra_fields
df1 = df[fields].groupby(['name', "op_type"]).sum()
if args.mem:
df1[mem_field] = df1[mem_field] / df1['count'] / 1024 / 1024
df1 = df1.sort_values(by=sort_by, ascending=False)[:top]
df1['csum'] = df1['pct'].cumsum()
df1['avg'] = df1['dur'] / df1['count']
df1['avg_kernel'] = df1['kernel'] / df1['count']
print("\n--Top nodes by total runtime")
print(df1.round(digits).to_string(index=True))
if args.csv:
if args.shapes:
df1 = df1.reset_index().set_index('op_type')
df1['aggname'] = df1.index.map(lambda x: x[0] + "." + x[1])
# df1['aggimpl'] = df1["aggname"].apply(lambda x: impl.get(x, 0))
df1['aggsrc'] = os.path.basename(args.strings[0])
df1['aggcnt'] = 1
df1.to_csv(args.csv)
if __name__ == '__main__':
main()