-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneral_test16.py
340 lines (305 loc) · 13.1 KB
/
general_test16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import sys
import argparse
import json
import matplotlib.pyplot as plt
import random
import numpy as np
import torch
from torch.autograd import Variable
from dataset.dataset import *
from utility.utils import *
from model import *
from domains.gridworld import *
from generators.obstacle_gen import *
import logging
import time
import math
def main(config,
n_domains=3000,
max_obs=30,
max_obs_size=None,
n_traj=1,
n_actions=8,gen = False):
# Correct vs total:
logging.basicConfig(filename='./resources/logs/generalization/16_w_64_model',format='%(asctime)s-%(levelname)s:%(message)s', level=logging.INFO)
correct, total = 0.0, 0.0
# Automatic swith of GPU mode if available
use_GPU = torch.cuda.is_available()
# Instantiate a VIN model
vin = VIN(config)
# Load model parameters
vin.load_state_dict(torch.load(config.weights))
# Use GPU if available
if use_GPU:
vin = vin.cuda()
counter,total_no_soln = 0,0
global data
data = []
t_list = []
total_dev_non_rel, total_dev_rel = 0.0,0.0
total_dist, total_astar_dist = 0.0,0.0
metrics = True #this enables displaying the distance left to reach goal upon a failure
dist_remain_avg = 0.0
for dom in range(n_domains):
if gen:
print('Gen started')
goal = [
np.random.randint(config.imsize),
np.random.randint(config.imsize)
]
obs = obstacles([config.imsize, config.imsize], goal, max_obs_size)
# Add obstacles to map
n_obs = obs.add_n_rand_obs(max_obs)
# Add border to map
border_res = obs.add_border()
# Ensure we have valid map
if n_obs == 0 or not border_res:
continue
start = None
else:
wpn = True
# path = './resources/maps/'
path = './resources/testing_maps/16x16/'
mp, goal, start = open_map(dom,path)
# path = './maps/8_data_300'
# mp, goal, start = open_map_list(dom,path)
mp[start[1]][start[0]] = 0 #Set the start position as freespace too
mp[goal[1]][goal[0]] = 0 #Set the goal position as freespace too
goal = [goal[1],goal[0]] #swap them around, for the row col format (x = col not row)
start = [start[1],start[0]]
obs = obstacles([config.imsize, config.imsize], goal, max_obs_size)
obs.dom = mp
# Get final map
im = obs.get_final()
#1 is obstacles.
#set obs.dom as the mp
logging.debug('0 is obstacle ')
logging.debug(' im: %s ', im)
# Generate gridworld from obstacle map
G = gridworld(im, goal[0], goal[1])
# Get value prior
value_prior = G.get_reward_prior()
# Sample random trajectories to our goal
states_xy, states_one_hot = sample_trajectory(G, n_traj,start,gen) #dijkstra trajectory
# print('states_xy', states_xy[0] , len(states_xy[0]))
if gen and len(states_xy[0]) > 0:
save_image(G.image,(goal[0],goal[1]),states_xy[0][0],states_xy, states_one_hot,counter) #this saves the maps
counter += 1
t0 = time.time()
for i in range(n_traj):
if len(states_xy[i]) > 1:
# Get number of steps to goal
L = len(states_xy[i]) * 2
# Allocate space for predicted steps
pred_traj = np.zeros((L, 2))
# Set starting position
pred_traj[0, :] = states_xy[i][0, :]
for j in range(1, L):
# Transform current state data
state_data = pred_traj[j - 1, :]
state_data = state_data.astype(np.int)
# Transform domain to Networks expected input shape
im_data = G.image.astype(np.int)
im_data = 1 - im_data
im_data = im_data.reshape(1, 1, config.imsize,
config.imsize)
# Transfrom value prior to Networks expected input shape
value_data = value_prior.astype(np.int)
value_data = value_data.reshape(1, 1, config.imsize,
config.imsize)
# Get inputs as expected by network
X_in = torch.from_numpy(
np.append(im_data, value_data, axis=1)).float()
S1_in = torch.from_numpy(state_data[0].reshape(
[1, 1])).float()
S2_in = torch.from_numpy(state_data[1].reshape(
[1, 1])).float()
# Send Tensors to GPU if available
if use_GPU:
X_in = X_in.cuda()
S1_in = S1_in.cuda()
S2_in = S2_in.cuda()
# Wrap to autograd.Variable
X_in, S1_in, S2_in = Variable(X_in), Variable(
S1_in), Variable(S2_in)
# Forward pass in our neural net
_, predictions = vin(X_in, S1_in, S2_in, config)
_, indices = torch.max(predictions.cpu(), 1, keepdim=True)
a = indices.data.numpy()[0][0]
# Transform prediction to indices
s = G.map_ind_to_state(pred_traj[j - 1, 0],
pred_traj[j - 1, 1])
ns = G.sample_next_state(s, a)
nr, nc = G.get_coords(ns)
pred_traj[j, 0] = nr
pred_traj[j, 1] = nc
if nr == goal[0] and nc == goal[1]:
# We hit goal so fill remaining steps
pred_traj[j + 1:, 0] = nr
pred_traj[j + 1:, 1] = nc
break
# Plot optimal and predicted path (also start, end)
if pred_traj[-1, 0] == goal[0] and pred_traj[-1, 1] == goal[1]:
logging.debug('#################### - Path Found map %s!\n', dom)
correct += 1
t1 = time.time()
t_list.append(t1-t0)
dev_rel,dev_non_rel,dist,astar_dist = deviation(states_xy[i],pred_traj,goal,total)
total_dev_rel += dev_rel
total_dev_non_rel += dev_non_rel
total_dist += dist
total_astar_dist += astar_dist
if config.plot == True:
visualize(G.image.T, states_xy[i], pred_traj)
elif metrics:
d = dist_left(pred_traj,goal)
dist_remain_avg += d
if config.plot == True:
visualize(G.image.T, states_xy[i], pred_traj)
total += 1
elif wpn:
total_no_soln += 1
sys.stdout.write("\r" + str(int(
(float(dom) / n_domains) * 100.0)) + "%")
sys.stdout.flush()
sys.stdout.write("\n")
if total and correct:
logging.info('Rollout Accuracy: %s',(100 * (correct / total)))
logging.info('Rollout Accuracy Adjusted: %s',(100 * (correct / (total+total_no_soln))))
logging.info('Total maps with no soln from Dijkstra %s', total_no_soln)
logging.info('Total avg Rel Deviation %s', (total_dev_rel/total))
logging.info('Total avg Non-Rel Deviation %s', (total_dev_non_rel/total))
logging.info('Total avg VIN Distance %s', (total_dist/total))
logging.info('Total avg Dijkstra Distance %s', (total_astar_dist/total))
logging.info('Avg deviation from Dijkstra: %s', ((((total_astar_dist/total))-((total_dist/total)))/((total_astar_dist/total))))
logging.info('Total elapsed time %s', (sum(t_list)/(total))) #TODO: Possibly add total no soln
logging.info('Avg distance left when failed: %s ', (dist_remain_avg/(total-correct)) )
logging.info('---------------------------------Done ------------------------------------')
else:
logging.info('No successes either vin or dijkstra')
def visualize(dom, states_xy, pred_traj):
fig, ax = plt.subplots()
implot = plt.imshow(dom, cmap="Greys_r")
ax.plot(states_xy[:, 0], states_xy[:, 1], c='b', label='Optimal Path')
ax.plot(
pred_traj[:, 0], pred_traj[:, 1], '-X', c='r', label='Predicted Path')
ax.plot(states_xy[0, 0], states_xy[0, 1], '-o', label='Start')
ax.plot(states_xy[-1, 0], states_xy[-1, 1], '-s', label='Goal')
legend = ax.legend(loc='upper right', shadow=False)
for label in legend.get_texts():
label.set_fontsize('x-small') # the legend text size
for label in legend.get_lines():
label.set_linewidth(0.5) # the legend line width
plt.draw()
plt.waitforbuttonpress(0)
plt.close(fig)
def save_image(im, goal, start,states_xy,states_one_hot,counter):
'''
Saves the data made by generator as jsons.
'''
s = config.imsize
if len(states_xy[0]) == 0:
im.tolist()[start_x][start_y] = 1
start_xy = [0,0]
mp = {
'grid': im.tolist(),
'goal': [goal[0],goal[1]],
# 'start': int(start),
'agent': start_xy}
# 'states_xy': states_xy[0].tolist(),
# 'states_one_hot': states_one_hot[0].tolist()
else:
mp = {
'grid': im.tolist(),
'goal': [goal[0],goal[1]],
# 'start': int(start),
'agent': states_xy[0][0].tolist()
# 'states_xy': states_xy[0].tolist(),
# 'states_one_hot': states_one_hot[0].tolist()
}
data.append(mp)
with open('./maps/' +str(s) + '_data_300' + '.json', 'w') as outfile:
json.dump(data,outfile)
def open_map(dom,path):
'''
Used to open a map json given dom and path, returns grid, goal and agent
'''
with open(str(path) + str(dom) +'.json') as json_file:
data = json.load(json_file)
logging.info('Opening file: ' + str(path) + str(dom) + '.json' )
return data['grid'], data['goal'], data['agent']
def open_map_list(dom,path):
with open(str(path) + '.json') as json_file:
data = json.load(json_file)
logging.info('Opening file: ' + str(path) + str(dom) + '.json' )
return data[dom]['grid'], data[dom]['goal'], data[dom]['agent']
def deviation(optimal_path, pred_path,goal, map_num):
optimal_path = np.array(optimal_path)
optimal_path = 1.0 * optimal_path
optimal_path_x = np.array(optimal_path[:,0])
optimal_path_y = np.array(optimal_path[:,1])
pred_path = np.unique(pred_path, axis=0) #removes duplicates at the end (when it reaches goal)
#print('Shortened path' , pred_path)
pred_path_x = np.array(pred_path[:,0])
pred_path_y = np.array(pred_path[:,1])
dist = 0.0
astar_dist = 0.0
prev = pred_path[0,:]
total_diff_gen = 0
for xy in pred_path[:,:]:
diff = math.sqrt( ((1.0 * xy[0]- 1.0*prev[0])**2)+((1.0*xy[1] - 1.0*prev[1])**2))
total_diff_gen += diff
dist+= ((xy[0]-prev[0])**2 + (xy[1]-prev[1])**2)**0.5
prev = xy
#prev = [0,0]
#print('opt', optimal_path[0,:])
prev = optimal_path[0,:]
total_diff_optim = 0
for xy in optimal_path[:,:]:
# print('xy', xy)
diff2 = math.sqrt( ((1.0 * xy[0]- 1.0*prev[0])**2)+((1.0*xy[1] - 1.0*prev[1])**2))
total_diff_optim += diff2
astar_dist+= ((xy[0]-prev[0])**2 + (xy[1]-prev[1])**2)**0.5
prev = xy
dev_non_rel = abs(total_diff_optim-total_diff_gen)
dev_rel = dev_non_rel/total_diff_optim #TODO: Add avg distance of gen trajectory
return(dev_rel,dev_non_rel,dist,astar_dist)
def dist_left(pred_traj, goal):
'''
Finds the distance left between the point and the goal
'''
pred_traj = np.array(pred_traj) #euclidean distance or geometric distance ? use geometric
x1,y1 = pred_traj[-1][0], pred_traj[-1][1]
x2,y2 = goal[0],goal[1]
dist = (((x2-x1)**2 + (y2-y1)**2))**0.5
return dist
if __name__ == '__main__':
# Parsing training parameters
parser = argparse.ArgumentParser()
parser.add_argument(
'--weights',
type=str,
default='trained/30k_no_block_dataset_vin_64x64.pth',
help='Path to trained weights')
parser.add_argument('--plot', action='store_true', default=False)
parser.add_argument('--gen', action='store_true', default=False)
parser.add_argument('--imsize', type=int, default=16, help='Size of image')
parser.add_argument(
'--k', type=int, default=20, help='Number of Value Iterations')
parser.add_argument(
'--l_i', type=int, default=2, help='Number of channels in input layer')
parser.add_argument(
'--l_h',
type=int,
default=150,
help='Number of channels in first hidden layer')
parser.add_argument(
'--l_q',
type=int,
default=10,
help='Number of channels in q layer (~actions) in VI-module')
config = parser.parse_args()
# Compute Paths generated by network and plot
for i in range(1):
main(config)
# main(config)