-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
68 lines (60 loc) · 2.01 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn.parameter import Parameter
class VIN(nn.Module):
def __init__(self, config):
super(VIN, self).__init__()
self.config = config
self.h = nn.Conv2d(
in_channels=config.l_i,
out_channels=config.l_h,
kernel_size=(3, 3),
stride=1,
padding=1,
bias=True)
self.r = nn.Conv2d(
in_channels=config.l_h,
out_channels=1,
kernel_size=(1, 1),
stride=1,
padding=0,
bias=False)
self.q = nn.Conv2d(
in_channels=1,
out_channels=config.l_q,
kernel_size=(3, 3),
stride=1,
padding=1,
bias=False)
self.fc = nn.Linear(in_features=config.l_q, out_features=8, bias=False)
self.w = Parameter(
torch.zeros(config.l_q, 1, 3, 3), requires_grad=True)
self.sm = nn.Softmax(dim=1)
def forward(self, X, S1, S2, config):
h = self.h(X)
r = self.r(h)
q = self.q(r)
v, _ = torch.max(q, dim=1, keepdim=True)
for i in range(0, config.k - 1):
q = F.conv2d(
torch.cat([r, v], 1),
torch.cat([self.q.weight, self.w], 1),
stride=1,
padding=1)
v, _ = torch.max(q, dim=1, keepdim=True)
q = F.conv2d(
torch.cat([r, v], 1),
torch.cat([self.q.weight, self.w], 1),
stride=1,
padding=1)
slice_s1 = S1.long().expand(config.imsize, 1, config.l_q, q.size(0))
slice_s1 = slice_s1.permute(3, 2, 1, 0)
q_out = q.gather(2, slice_s1).squeeze(2)
slice_s2 = S2.long().expand(1, config.l_q, q.size(0))
slice_s2 = slice_s2.permute(2, 1, 0)
q_out = q_out.gather(2, slice_s2).squeeze(2)
logits = self.fc(q_out)
return logits, self.sm(logits)