This repository was archived by the owner on Nov 29, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathopenpose.cpp
472 lines (404 loc) · 16.6 KB
/
openpose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#include <assert.h>
#include <fstream>
#include <sstream>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <sys/stat.h>
#include <cmath>
#include <time.h>
#include <cuda_runtime_api.h>
#include "NvInfer.h"
#include "NvCaffeParser.h"
#include "common.h"
// Custom Layer
#include "layers/plugin.hpp"
static Logger gLogger;
using namespace nvinfer1;
using namespace nvcaffeparser1;
// stuff we know about the network and the caffe input/output blobs
static const int BATCH_SIZE = 4;
static const int TIMING_ITERATIONS = 1000;
// const char *file_prototxt = "pose_deploy_linevec.prototxt";
// const char *file_caffemodel = "pose_iter_440000.caffemodel";
const char *file_prototxt = "pose_deploy.prototxt";
const char *file_caffemodel = "pose_iter_584000.caffemodel";
const char* model_path = "models/pose/coco";
struct Params
{
std::string deployFile, modelFile, engine, calibrationCache{"CalibrationTable"};
std::string inputs;
std::vector<std::string> outputs;
int device{0}, batchSize{1}, workspaceSize{16}, iterations{10}, avgRuns{10}, useDLA{0};
bool fp16{false}, int8{false}, verbose{false}, allowGPUFallback{false};
float pct{99};
} gParams;
std::vector<std::string> gInputs;
std::map<std::string, Dims3> gInputDimensions;
std::string locateFile(const std::string& input)
{
// std::vector<std::string> dirs{"models/pose/coco/"};
std::vector<std::string> dirs{"./"};
return locateFile(input, dirs);
}
/* Logger */
float percentile(float percentage, std::vector<float>& times)
{
int all = static_cast<int>(times.size());
int exclude = static_cast<int>((1 - percentage / 100) * all);
if (0 <= exclude && exclude <= all)
{
std::sort(times.begin(), times.end());
return times[all == exclude ? 0 : all - 1 - exclude];
}
return std::numeric_limits<float>::infinity();
}
struct Profiler : public IProfiler
{
typedef std::pair<std::string, float> Record;
std::vector<Record> mProfile;
virtual void reportLayerTime(const char* layerName, float ms)
{
auto record = std::find_if(mProfile.begin(), mProfile.end(), [&](const Record& r){ return r.first == layerName; });
if (record == mProfile.end())
mProfile.push_back(std::make_pair(layerName, ms));
else
record->second += ms;
}
void printLayerTimes(bool print_all = true)
{
float totalTime = 0;
for (size_t i = 0; i < mProfile.size(); i++)
{
if (print_all)
printf("%-40.40s %4.3fms\n", mProfile[i].first.c_str(), mProfile[i].second / TIMING_ITERATIONS);
totalTime += mProfile[i].second;
}
printf("Time over all layers: %4.3f\n", totalTime / TIMING_ITERATIONS);
}
} gProfiler;
ICudaEngine* caffeToTRTModel()
{
// create API root class - must span the lifetime of the engine usage
IBuilder* builder = createInferBuilder(gLogger);
// parse the caffe model to populate the network, then set the outputs
INetworkDefinition* network = builder->createNetwork();
ICaffeParser* parser = createCaffeParser();
// Parse Plugin Layers
PluginFactory parserPluginFactory;
parser->setPluginFactoryExt(&parserPluginFactory);
const IBlobNameToTensor *blobNameToTensor =
parser->parse(gParams.deployFile.c_str(), // caffe deploy file
gParams.modelFile.c_str(), // caffe model file
*network, // network definition that the parser will populate
gParams.fp16 ? DataType::kHALF : DataType::kFLOAT);
if (!blobNameToTensor)
return nullptr;
// TODO: Input??
for (int i = 0, n = network->getNbInputs(); i < n; i++)
{
Dims3 dims = static_cast<Dims3&&>(network->getInput(i)->getDimensions());
gInputs.push_back(network->getInput(i)->getName());
gInputDimensions.insert(std::make_pair(network->getInput(i)->getName(), dims));
std::cout << "Input \"" << network->getInput(i)->getName() << "\": " << dims.d[0] << "x" << dims.d[1] << "x" << dims.d[2] << std::endl;
}
// specify which tensors are outputs
// the caffe file has no notion of outputs,
// so we need to manually say which tensors the engine should generate
for (auto& s : gParams.outputs)
{
if (blobNameToTensor->find(s.c_str()) == nullptr)
{
std::cout << "could not find output blob " << s << std::endl;
return nullptr;
}
network->markOutput(*blobNameToTensor->find(s.c_str()));
}
for (int i = 0, n = network->getNbOutputs(); i < n; i++)
{
Dims3 dims = static_cast<Dims3&&>(network->getOutput(i)->getDimensions());
std::cout << "Output \"" << network->getOutput(i)->getName() << "\": " << dims.d[0] << "x" << dims.d[1] << "x"
<< dims.d[2] << std::endl;
}
// Build the engine
builder->setMaxBatchSize(gParams.batchSize);
builder->setMaxWorkspaceSize(size_t(gParams.workspaceSize) << 20);
builder->setFp16Mode(gParams.fp16);
// RndInt8Calibrator calibrator(1, gParams.calibrationCache);
// if (gParams.int8)
// {
// builder->setInt8Mode(true);
// builder->setInt8Calibrator(&calibrator);
// }
if (gParams.useDLA > 0)
{
builder->setDefaultDeviceType(static_cast<DeviceType>(gParams.useDLA));
if (gParams.allowGPUFallback)
builder->allowGPUFallback(gParams.allowGPUFallback);
}
ICudaEngine* engine = builder->buildCudaEngine(*network);
if (engine == nullptr)
std::cout << "could not build engine" << std::endl;
// we don't need the network any more, and we can destroy the parser
parserPluginFactory.destroyPlugin();
parser->destroy();
network->destroy();
builder->destroy();
return engine;
}
void createMemory(const ICudaEngine* engine, std::vector<void*>& buffers, const std::string& name)
{
size_t bindingIndex = engine->getBindingIndex(name.c_str());
printf("name=%s, bindingIndex=%d, buffers.size()=%d\n", name.c_str(), (int) bindingIndex, (int) buffers.size());
assert(bindingIndex < buffers.size());
Dims3 dimensions = static_cast<Dims3&&>(engine->getBindingDimensions((int) bindingIndex));
size_t eltCount = dimensions.d[0] * dimensions.d[1] * dimensions.d[2] * gParams.batchSize, memSize = eltCount * sizeof(float);
float* localMem = new float[eltCount];
for (size_t i = 0; i < eltCount; i++)
localMem[i] = (float(rand()) / RAND_MAX) * 2 - 1;
void* deviceMem;
CHECK(cudaMalloc(&deviceMem, memSize));
if (deviceMem == nullptr)
{
std::cerr << "Out of memory" << std::endl;
exit(1);
}
CHECK(cudaMemcpy(deviceMem, localMem, memSize, cudaMemcpyHostToDevice));
delete[] localMem;
buffers[bindingIndex] = deviceMem;
}
void doInference(ICudaEngine* engine)
{
IExecutionContext* context = engine->createExecutionContext();
context->setProfiler(&gProfiler);
// input and output buffer pointers that we pass to the engine - the engine requires exactly IEngine::getNbBindings(),
// of these, but in this case we know that there is exactly one input and one output.
std::vector<void*> buffers(gInputs.size() + gParams.outputs.size());
for (size_t i = 0; i < gInputs.size(); i++)
createMemory(engine, buffers, gInputs[i]);
for (size_t i = 0; i < gParams.outputs.size(); i++)
createMemory(engine, buffers, gParams.outputs[i]);
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
cudaEvent_t start, end;
CHECK(cudaEventCreateWithFlags(&start, cudaEventBlockingSync));
CHECK(cudaEventCreateWithFlags(&end, cudaEventBlockingSync));
std::vector<float> times(gParams.avgRuns);
float endTotalGpu{0}, endTotalHost{0}; // GPU and Host timers
for (int j = 0; j < gParams.iterations; j++)
{
float totalGpu{0}, totalHost{0}; // GPU and Host timers
for (int i = 0; i < gParams.avgRuns; i++)
{
auto tStart = std::chrono::high_resolution_clock::now();
cudaEventRecord(start, stream);
context->enqueue(gParams.batchSize, &buffers[0], stream, nullptr);
cudaEventRecord(end, stream);
cudaEventSynchronize(end);
auto tEnd = std::chrono::high_resolution_clock::now();
totalHost = std::chrono::duration<float, std::milli>(tEnd - tStart).count();
float ms;
cudaEventElapsedTime(&ms, start, end);
times[i] = ms;
totalGpu += ms;
}
totalGpu /= gParams.avgRuns;
totalHost /= gParams.avgRuns;
std::cout << "Average over " << gParams.avgRuns << " runs is " << totalGpu << " ms (host walltime is " << totalHost << " ms, "
<< static_cast<int>(gParams.pct) << "\% percentile time is " << percentile(gParams.pct, times) << ")." << std::endl;
endTotalGpu += totalGpu;
endTotalHost += totalHost;
}
endTotalGpu /= gParams.iterations;
endTotalHost /= gParams.iterations;
std::cout << "end iteration" << std::endl;
std::cout << "Total average over " << gParams.avgRuns * gParams.iterations << " runs is " << endTotalGpu << " ms (host walltime is " << endTotalHost << " ms)." << std::endl;
cudaStreamDestroy(stream);
cudaEventDestroy(start);
cudaEventDestroy(end);
context->destroy();
}
ICudaEngine* createEngine()
{
ICudaEngine* engine;
if ((!gParams.deployFile.empty()))
{
// Create engine (caffe)
engine = caffeToTRTModel(); // load prototxt & caffemodel files
if (!engine)
{
std::cerr << "Engine could not be created" << std::endl;
return nullptr;
}
// write plan file if it is specified
if (!gParams.engine.empty())
{
std::ofstream p(gParams.engine);
if (!p)
{
std::cerr << "could not open plan output file" << std::endl;
return nullptr;
}
IHostMemory* ptr = engine->serialize();
assert(ptr);
p.write(reinterpret_cast<const char*>(ptr->data()), ptr->size());
ptr->destroy();
}
return engine;
}
// load directlry from serialized engine file if deploy not specified
if (!gParams.engine.empty()) {
char* trtModelStream {nullptr};
size_t size{0};
std::ifstream file(gParams.engine, std::ios::binary);
if (file.good()) {
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
}
IRuntime* infer = createInferRuntime(gLogger);
PluginFactory pluginFactory;
engine = infer->deserializeCudaEngine(trtModelStream, size, &pluginFactory);
//pluginFactory.destroyPlugin();
if (trtModelStream) delete[] trtModelStream;
gParams.inputs.empty() ?
gInputs.push_back("image") :
gInputs.push_back(gParams.inputs.c_str());
return engine;
}
// complain about empty deploy file
std::cerr << "Deploy file not specified" << std::endl;
return nullptr;
}
static void printUsage()
{
printf("\n");
printf("Mandatory params:\n");
printf(" --deploy=<file> Caffe deploy file\n");
printf(" --output=<name> Output blob name (can be specified multiple times)\n");
printf(" --model=<file> Caffe model file (default = no model, random weights used)\n");
printf("\nOptional params:\n");
printf(" --batch=N Set batch size (default = %d)\n", gParams.batchSize);
printf(" --device=N Set cuda device to N (default = %d)\n", gParams.device);
printf(" --iterations=N Run N iterations (default = %d)\n", gParams.iterations);
printf(" --avgRuns=N Set avgRuns to N - perf is measured as an average of avgRuns (default=%d)\n", gParams.avgRuns);
printf(" --percentile=P For each iteration, report the percentile time at P percentage (0<=P<=100, with 0 representing min, and 100 representing max; default = %.1f%%)\n", gParams.pct);
printf(" --workspace=N Set workspace size in megabytes (default = %d)\n", gParams.workspaceSize);
printf(" --fp16 Run in fp16 mode (default = false). Permits 16-bit kernels\n");
printf(" --int8 Run in int8 mode (default = false). Currently no support for ONNX model.\n");
printf(" --verbose Use verbose logging (default = false)\n");
printf(" --engine=<file> Generate a serialized TensorRT engine\n");
printf(" --calib=<file> Read INT8 calibration cache file. Currently no support for ONNX model.\n");
printf(" --useDLA=N Enable execution on DLA for all layers that support dla. Value can range from 1 to N, where N is the number of dla engines on the platform.\n");
printf(" --allowGPUFallback If --useDLA flag is present and if a layer can't run on DLA, then run on GPU. \n");
fflush(stdout);
}
bool parseString(const char* arg, const char* name, std::string& value)
{
size_t n = strlen(name);
bool match = arg[0] == '-' && arg[1] == '-' && !strncmp(arg + 2, name, n) && arg[n + 2] == '=';
if (match)
{
value = arg + n + 3;
std::cout << name << ": " << value << std::endl;
}
return match;
}
bool parseInt(const char* arg, const char* name, int& value)
{
size_t n = strlen(name);
bool match = arg[0] == '-' && arg[1] == '-' && !strncmp(arg + 2, name, n) && arg[n + 2] == '=';
if (match)
{
value = atoi(arg + n + 3);
std::cout << name << ": " << value << std::endl;
}
return match;
}
bool parseBool(const char* arg, const char* name, bool& value)
{
size_t n = strlen(name);
bool match = arg[0] == '-' && arg[1] == '-' && !strncmp(arg + 2, name, n);
if (match)
{
std::cout << name << std::endl;
value = true;
}
return match;
}
bool parseFloat(const char* arg, const char* name, float& value)
{
size_t n = strlen(name);
bool match = arg[0] == '-' && arg[1] == '-' && !strncmp(arg + 2, name, n) && arg[n + 2] == '=';
if (match)
{
value = atof(arg + n + 3);
std::cout << name << ": " << value << std::endl;
}
return match;
}
bool parseArgs(int argc, char* argv[])
{
if (argc < 2)
{
printUsage();
return false;
}
for (int j = 1; j < argc; j++)
{
if (parseString(argv[j], "model", gParams.modelFile) || parseString(argv[j], "deploy", gParams.deployFile) || parseString(argv[j], "engine", gParams.engine))
continue;
if (parseString(argv[j], "calib", gParams.calibrationCache))
continue;
std::string output;
if (parseString(argv[j], "output", output))
{
gParams.outputs.push_back(output);
continue;
}
if (parseInt(argv[j], "batch", gParams.batchSize) || parseInt(argv[j], "iterations", gParams.iterations) || parseInt(argv[j], "avgRuns", gParams.avgRuns)
|| parseInt(argv[j], "device", gParams.device) || parseInt(argv[j], "workspace", gParams.workspaceSize)
|| parseInt(argv[j], "useDLA", gParams.useDLA))
continue;
if (parseFloat(argv[j], "percentile", gParams.pct))
continue;
if (parseBool(argv[j], "fp16", gParams.fp16) || parseBool(argv[j], "int8", gParams.int8)
|| parseBool(argv[j], "verbose", gParams.verbose) || parseBool(argv[j], "allowGPUFallback", gParams.allowGPUFallback))
continue;
printf("Unknown argument: %s\n", argv[j]);
return false;
}
return true;
}
int main(int argc, char** argv)
{
if (!parseArgs(argc, argv))
return -1;
cudaSetDevice(gParams.device);
if (gParams.outputs.size() == 0 && !gParams.deployFile.empty() && !gParams.modelFile.empty())
{
std::cerr << "At least one network output must be defined" << std::endl;
return -1;
}
std::cout << "Building and running a GPU inference engine for OpenPose, N=" << gParams.batchSize << "..." << std::endl;
// create an engine
ICudaEngine* engine = createEngine();
if (!engine)
{
std::cerr << "Engine could not be created" << std::endl;
return -1;
}
nvcaffeparser1::shutdownProtobufLibrary();
// run inference with null data to time network performance
std::cout << "Run inference..." << std::endl;
// timeInference(engine);
doInference(engine);
engine->destroy();
// gProfiler.printLayerTimes(false);
std::cout << "Done." << std::endl;
return 0;
}