This repository was archived by the owner on Nov 29, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathopenpose.py
197 lines (161 loc) · 6.99 KB
/
openpose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#
# Copyright 1993-2018 NVIDIA Corporation. All rights reserved.
#
# NOTICE TO LICENSEE:
#
# This source code and/or documentation ("Licensed Deliverables") are
# subject to NVIDIA intellectual property rights under U.S. and
# international Copyright laws.
#
# These Licensed Deliverables contained herein is PROPRIETARY and
# CONFIDENTIAL to NVIDIA and is being provided under the terms and
# conditions of a form of NVIDIA software license agreement by and
# between NVIDIA and Licensee ("License Agreement") or electronically
# accepted by Licensee. Notwithstanding any terms or conditions to
# the contrary in the License Agreement, reproduction or disclosure
# of the Licensed Deliverables to any third party without the express
# written consent of NVIDIA is prohibited.
#
# NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
# LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
# SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
# PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
# NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
# DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
# NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
# NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
# LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
# SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
# OF THESE LICENSED DELIVERABLES.
#
# U.S. Government End Users. These Licensed Deliverables are a
# "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
# 1995), consisting of "commercial computer software" and "commercial
# computer software documentation" as such terms are used in 48
# C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
# only as a commercial end item. Consistent with 48 C.F.R.12.212 and
# 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
# U.S. Government End Users acquire the Licensed Deliverables with
# only those rights set forth herein.
#
# Any use of the Licensed Deliverables in individual and commercial
# software must include, in the user documentation and internal
# comments to the code, the above Disclaimer and U.S. Government End
# Users Notice.
#
#!/usr/bin/python
from __future__ import division
import os
from random import randint
import numpy as np
try:
from PIL import Image
except ImportError as err:
raise ImportError("""ERROR: Failed to import module ({})
Please make sure you have Pillow installed.
For installation instructions, see:
http://pillow.readthedocs.io/en/stable/installation.html""".format(err))
try:
import pycuda.driver as cuda
import pycuda.gpuarray as gpuarray
import pycuda.autoinit
import argparse
except ImportError as err:
raise ImportError("""ERROR: Failed to import module ({})
Please make sure you have pycuda and the example dependencies installed.
https://wiki.tiker.net/PyCuda/Installation/Linux
pip(3) install tensorrt[examples]""".format(err))
try:
import tensorrt as trt
from tensorrt import parsers
except ImportError as err:
raise ImportError("""ERROR: Failed to import module ({})
Please make sure you have the TensorRT Library installed
and accessible in your LD_LIBRARY_PATH""".format(err))
class Profiler(trt.infer.Profiler):
"""
Example Implimentation of a Profiler
Is identical to the Profiler class in trt.infer so it is possible
to just use that instead of implementing this if further
functionality is not needed
"""
def __init__(self, timing_iter):
trt.infer.Profiler.__init__(self)
self.timing_iterations = timing_iter
self.profile = []
def report_layer_time(self, layerName, ms):
record = next((r for r in self.profile if r[0] == layerName), (None, None))
if record == (None, None):
self.profile.append((layerName, ms))
else:
self.profile[self.profile.index(record)] = (record[0], record[1] + ms)
def print_layer_times(self):
totalTime = 0
for i in range(len(self.profile)):
print("{:40.40} {:4.3f}ms".format(self.profile[i][0], self.profile[i][1] / self.timing_iterations))
totalTime += self.profile[i][1]
print("Time over all layers: {:4.3f}".format(totalTime / self.timing_iterations))
BATCH_SIZE = 4
TIMING_INTERATIONS = 1000
G_PROFILER = Profiler(TIMING_INTERATIONS)
G_LOGGER = trt.infer.ConsoleLogger(trt.infer.LogSeverity.INFO)
INPUT_LAYERS = ["image"]
OUTPUT_LAYERS = ["net_output"]
OUTPUT_SIZE = 57
PARSER = argparse.ArgumentParser(description="Example of how to create a Caffe based TensorRT Engine and profile inference")
PARSER.add_argument('datadir', help='Path to Python TensorRT data directory (realpath)')
DATA_DIR = PARSER.parse_args().datadir
MODEL_PROTOTXT = DATA_DIR + "pose_deploy.prototxt"
CAFFEMODEL = DATA_DIR + "pose_iter_584000.caffemodel"
# INPUT_LAYERS = ["data"]
# OUTPUT_LAYERS = ["prob"]
# MODEL_PROTOTXT = DATA_DIR + "googlenet.prototxt"
# CAFFEMODEL = DATA_DIR + "googlenet.caffemodel"
#Run inference on device
def time_inference(engine, batch_size):
assert(engine.get_nb_bindings() == 2)
input_index = engine.get_binding_index(INPUT_LAYERS[0])
output_index = engine.get_binding_index(OUTPUT_LAYERS[0])
input_dim = engine.get_binding_dimensions(input_index).to_DimsCHW()
output_dim = engine.get_binding_dimensions(output_index).to_DimsCHW()
insize = batch_size * input_dim.C() * input_dim.H() * input_dim.W() * 4
outsize = batch_size * output_dim.C() * output_dim.H() * output_dim.W() * 4
d_input = cuda.mem_alloc(insize)
d_output = cuda.mem_alloc(outsize)
bindings = [int(d_input), int(d_output)]
context = engine.create_execution_context()
context.set_profiler(G_PROFILER)
cuda.memset_d32(d_input, 0, insize // 4)
for i in range(TIMING_INTERATIONS):
context.execute(batch_size, bindings)
context.destroy()
return
def main():
path = dir_path = os.path.dirname(os.path.realpath(__file__))
print("Building and running GPU inference for OpenPose, N=4")
#Convert caffe model to TensorRT engine
engine = trt.utils.caffe_to_trt_engine(G_LOGGER,
MODEL_PROTOTXT,
CAFFEMODEL,
10,
16 << 20,
OUTPUT_LAYERS,
trt.infer.DataType.HALF)
runtime = trt.infer.create_infer_runtime(G_LOGGER)
print("Bindings after deserializing")
for bi in range(engine.get_nb_bindings()):
if engine.binding_is_input(bi) == True:
print("Binding " + str(bi) + " (" + engine.get_binding_name(bi) + "): Input")
else:
print("Binding " + str(bi) + " (" + engine.get_binding_name(bi) + "): Output")
time_inference(engine, BATCH_SIZE)
engine.destroy()
runtime.destroy()
G_PROFILER.print_layer_times()
print("Done")
return
if __name__ == "__main__":
main()