-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_preprocess.py
265 lines (200 loc) · 7.78 KB
/
text_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from transformers import BertTokenizer, BertModel
from bert_vocab_check import BertVocabCheck
from glob import glob
from pathlib import Path
import re
import os
from sklearn.model_selection import train_test_split
from expand_contraction import expand_contraction
import pandas as pd
import numpy as np
## custom functions -----
def read_and_concat(source_dir, group):
if group == "control":
paths = glob(os.path.join(source_dir, "control", "*.txt"))
elif group == "experimental":
paths = glob(os.path.join(source_dir, "dementia", "*.txt"))
else:
raise ValueError("Wrong group name")
concat_utts = list()
for path in paths:
with open(path) as f:
utt = f.read().splitlines()
concat_utts.append(" ".join(utt))
return concat_utts, paths
def save_oov(oov_dict, save_name):
k = list(oov_dict.keys())
v = list(oov_dict.values())
oov_df = pd.DataFrame(data={"word": k, "count": v})
save_path = "./results/oov/" + save_name + ".xlsx"
oov_df.to_excel(save_path)
def pattern_sub(pattern, sub, ds):
pattern_compile = re.compile(pattern)
for n, s in enumerate(ds):
ds[n] = pattern_compile.sub(sub, s)
return ds
def comp_word_expand(con, ds):
p = "[a-z]*\\"+con+"[a-z]*"
pattern_compile = re.compile(p)
for n, s in enumerate(ds):
matched_words = pattern_compile.findall(s)
for mword in matched_words:
expand_word = mword.replace(con, " ")
s = s.replace(mword, expand_word)
ds[n] = s
return ds
## import data -----
source_dir = Path("./data/text/cookie_minimal_prep")
con_utts, con_paths = read_and_concat(source_dir, "control")
exp_utts, exp_paths = read_and_concat(source_dir, "experimental")
# check some words in BERT vocab
tokenizer = BertTokenizer.from_pretrained("bert-base-cased", do_lower_case=False)
# 'she' in tokenizer.vocab # True
# 'I' in tokenizer.vocab # False
# 'he' in tokenizer.vocab # True
# 'is' in tokenizer.vocab # True
# 'are' in tokenizer.vocab # True
# 'overflow' in tokenizer.vocab # False
# '.' in tokenizer.vocab # True
# '?' in tokenizer.vocab # True
'flowing' in tokenizer.vocab
## 1st run -----
print("\n ----- 1st run ----- \n")
print("control group")
con_vocab = BertVocabCheck(con_utts)
print("experimental group")
exp_vocab = BertVocabCheck(exp_utts)
con_oov = con_vocab.oov
exp_oov = exp_vocab.oov
# top ten OOV words
print(list(con_oov.items())[:10])
print(list(exp_oov.items())[:10])
# save OOV
# save_oov(con_oov, "con1")
# save_oov(exp_oov, "exp1")
# exapand contractions
con_utts = expand_contraction(con_utts)
exp_utts = expand_contraction(exp_utts)
# remove 's from possesive constractions
con_utts = pattern_sub("\'s", "", con_utts)
exp_utts = pattern_sub("\'s", "", exp_utts)
## 2nd run -----
print("\n ----- 2nd run ----- \n")
print("control group")
con_vocab = BertVocabCheck(con_utts)
print("experimental group")
exp_vocab = BertVocabCheck(exp_utts)
con_oov = con_vocab.oov
exp_oov = exp_vocab.oov
print(list(con_oov.items())[:10])
print(list(exp_oov.items())[:10])
# save_oov(con_oov, "con2")
# save_oov(exp_oov, "exp2")
# expand words concatednated by _
con_utts = comp_word_expand("_", con_utts)
exp_utts = comp_word_expand("_", exp_utts)
con_utts = comp_word_expand("+", con_utts)
exp_utts = comp_word_expand("+", exp_utts)
# substitute some patterns
con_utts = pattern_sub("splashing", "splash", con_utts)
exp_utts = pattern_sub("splashing", "splash", exp_utts)
con_utts = pattern_sub("stools", "stool", con_utts)
exp_utts = pattern_sub("stools", "stool", exp_utts)
con_utts = pattern_sub("ladys", "lady", con_utts)
exp_utts = pattern_sub("ladys", "lady", exp_utts)
con_utts = pattern_sub("knobs", "knob", con_utts)
exp_utts = pattern_sub("knobs", "knob", exp_utts)
con_utts = pattern_sub("cupboards", "cupboard", con_utts)
exp_utts = pattern_sub("cupboards", "cupboard", exp_utts)
con_utts = pattern_sub("jars", "jar", con_utts)
exp_utts = pattern_sub("jars", "jar", exp_utts)
con_utts = pattern_sub(":", "", con_utts)
exp_utts = pattern_sub(":", "", exp_utts)
## 3rd run -----
print("\n ----- 3rd run ----- \n")
print("control group")
con_vocab = BertVocabCheck(con_utts)
print("experimental group")
exp_vocab = BertVocabCheck(exp_utts)
con_oov = con_vocab.oov
exp_oov = exp_vocab.oov
print(list(con_oov.items())[:10])
print(list(exp_oov.items())[:10])
# save_oov(con_oov, "con3")
# save_oov(exp_oov, "exp3")
con_utts = pattern_sub("overflowing", "over flow", con_utts)
exp_utts = pattern_sub("overflowing", "over flow", exp_utts)
# conf = "./data/cookie_ebd_prep_con.txt"
# with open(conf, "wt") as f:
# for u in con_utts:
# f.write(u+"\n")
# expf = "./data/cookie_ebd_prep_exp.txt"
# with open(expf, "wt") as f:
# for u in exp_utts:
# f.write(u+"\n")
utts = con_utts + exp_utts
labels = [0]*len(con_utts) + [1]*len(exp_utts)
paths = con_paths + exp_paths
df = pd.DataFrame(data={"utts": utts, "labels": labels, "paths": paths})
df = df.sample(frac = 1)
df.to_csv("./data/text/cookie_ebd_prep.csv", index=False)
## train-test split -----
def trunc_pad(s, trunc_len):
# max length of sentences
max_len = 0
for v in s.values:
if len(v) > max_len:
max_len = len(v)
# truncate sentences longer than `trunc_len`
if max_len > trunc_len:
long_sen_idx = list()
for n, v in enumerate(s.values):
if len(v) > trunc_len:
long_sen_idx.append(n)
s = s.drop(s.index[long_sen_idx])
# renew max length of sentences
max_len = 0
for v in s.values:
if len(v) > max_len:
max_len = len(v)
else:
long_sen_idx = None
# zero padding
padded = np.array([v + [0]*(max_len - len(v)) for v in s.values])
return padded, long_sen_idx
# import dataset
df = pd.read_csv("./data/text/cookie_ebd_prep.csv", index_col=0)
df["labels"].value_counts()
# load model and tokenizer
model = BertModel.from_pretrained("bert-base-cased")
tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
max_input_size = 512
# tokenization {101: [CLS], 102: [SEP]}
tokenized = df["utts"].apply((lambda x: tokenizer.encode(x, add_special_tokens=True)))
# sequence lengh distribution
seq_lens = []
for s in tokenized:
seq_lens.append(len(s))
seq_lens = pd.Series(seq_lens)
hist = seq_lens.hist()
hist.set_title("Sentence lengths histogram")
# truncate too long sentences and zero padding
_, long_sen_idx = trunc_pad(tokenized, max_input_size)
df.drop(df.iloc[long_sen_idx].index, inplace=True)
df_con = df[df["labels"] == 0]
df_exp = df[df["labels"] == 1]
# train:valid:test = 0.765:0.135:0.1
train_test_ratio = 0.90
train_valid_ratio = 0.85
df_con_train, df_con_test = train_test_split(df_con, train_size=train_test_ratio, random_state=1)
df_exp_train, df_exp_test = train_test_split(df_exp, train_size=train_test_ratio, random_state=1)
df_con_train, df_con_valid = train_test_split(df_con_train, train_size=train_valid_ratio, random_state=1)
df_exp_train, df_exp_valid = train_test_split(df_exp_train, train_size=train_valid_ratio, random_state=1)
df_train = pd.concat([df_con_train, df_exp_train], ignore_index=True, sort=False)
df_valid = pd.concat([df_con_valid, df_exp_valid], ignore_index=True, sort=False)
df_test = pd.concat([df_con_test, df_exp_test], ignore_index=True, sort=False)
# write processed data
destination_folder = "./"
df_train.to_csv(destination_folder+"train.csv", index=False)
df_valid.to_csv(destination_folder+"valid.csv", index=False)
df_test.to_csv(destination_folder+"test.csv", index=False)