|
| 1 | +import cv2 |
| 2 | +import os |
| 3 | +import numpy as np |
| 4 | +import matplotlib.pyplot as plt |
| 5 | +from matplotlib.widgets import RectangleSelector |
| 6 | +from matplotlib import patches |
| 7 | + |
| 8 | +from color_histogram import color_histogram |
| 9 | +from propagate import propagate |
| 10 | +from observe import observe |
| 11 | +from resample import resample |
| 12 | +from estimate import estimate |
| 13 | + |
| 14 | + |
| 15 | +top_left = [] |
| 16 | +bottom_right = [] |
| 17 | + |
| 18 | +def line_select_callback(clk, rls): |
| 19 | + print(clk.xdata, clk.ydata) |
| 20 | + global top_left |
| 21 | + global bottom_right |
| 22 | + top_left = (int(clk.xdata), int(clk.ydata)) |
| 23 | + bottom_right = (int(rls.xdata), int(rls.ydata)) |
| 24 | + |
| 25 | + |
| 26 | +def onkeypress(event): |
| 27 | + global top_left |
| 28 | + global bottom_right |
| 29 | + global img |
| 30 | + if event.key == 'q': |
| 31 | + print('final bbox', top_left, bottom_right) |
| 32 | + plt.close() |
| 33 | + |
| 34 | + |
| 35 | +def toggle_selector(event): |
| 36 | + toggle_selector.RS.set_active(True) |
| 37 | + |
| 38 | + |
| 39 | +def condensation_tracker(video_name, params): |
| 40 | + ''' |
| 41 | + video_name - video name |
| 42 | + params - parameters |
| 43 | + - draw_plats {0, 1} draw output plots throughout |
| 44 | + - hist_bin 1-255 number of histogram bins for each color: proper values 4,8,16 |
| 45 | + - alpha number in [0,1]; color histogram update parameter (0 = no update) |
| 46 | + - sigma_position std. dev. of system model position noise |
| 47 | + - sigma_observe std. dev. of observation model noise |
| 48 | + - num_particles number of particles |
| 49 | + - model {0,1} system model (0 = no motion, 1 = constant velocity) |
| 50 | + if using model = 1 then the following parameters are used: |
| 51 | + - sigma_velocity std. dev. of system model velocity noise |
| 52 | + - initial_velocity initial velocity to set particles to |
| 53 | + ''' |
| 54 | + # Choose video |
| 55 | + if video_name == "video1.avi": |
| 56 | + first_frame = 10 |
| 57 | + last_frame = 42 |
| 58 | + elif video_name == "video2.avi": |
| 59 | + first_frame = 3 |
| 60 | + last_frame = 40 |
| 61 | + elif video_name == "video3.avi": |
| 62 | + first_frame = 1 |
| 63 | + last_frame = 60 |
| 64 | + |
| 65 | + # Change this to where your data is |
| 66 | + data_dir = './data/' |
| 67 | + video_path = os.path.join(data_dir, video_name) |
| 68 | + |
| 69 | + vidcap = cv2.VideoCapture(video_path) |
| 70 | + vidcap.set(1, first_frame) |
| 71 | + ret, first_image = vidcap.read() |
| 72 | + |
| 73 | + fig, ax = plt.subplots(1) |
| 74 | + image = first_image |
| 75 | + frame_height = first_image.shape[0] |
| 76 | + frame_width = first_image.shape[1] |
| 77 | + |
| 78 | + first_image = cv2.cvtColor(first_image, cv2.COLOR_BGR2RGB) |
| 79 | + ax.imshow(first_image) |
| 80 | + |
| 81 | + toggle_selector.RS = RectangleSelector( |
| 82 | + ax, line_select_callback, |
| 83 | + useblit=True, |
| 84 | + button=[1], minspanx=5, minspany=5, |
| 85 | + spancoords='pixels', interactive=True |
| 86 | + ) |
| 87 | + bbox = plt.connect('key_press_event', toggle_selector) |
| 88 | + key = plt.connect('key_press_event', onkeypress) |
| 89 | + plt.title("Draw a box then press 'q' to continue") |
| 90 | + plt.show() |
| 91 | + |
| 92 | + bbox_width = bottom_right[0] - top_left[0] |
| 93 | + bbox_height = bottom_right[1] - top_left[1] |
| 94 | + |
| 95 | + # Get initial color histogram |
| 96 | + # === implement fuction color_histogram() === |
| 97 | + hist = color_histogram(top_left[0], top_left[1], bottom_right[0], bottom_right[1], |
| 98 | + first_image, params["hist_bin"]) |
| 99 | + # =========================================== |
| 100 | + |
| 101 | + state_length = 2 |
| 102 | + if(params["model"] == 1): |
| 103 | + state_length = 4 |
| 104 | + |
| 105 | + # a priori mean state |
| 106 | + mean_state_a_priori = np.zeros([last_frame - first_frame + 1, state_length]) |
| 107 | + mean_state_a_posteriori = np.zeros([last_frame - first_frame + 1, state_length]) |
| 108 | + # bounding box centre |
| 109 | + mean_state_a_priori[0, 0:2] = [(top_left[0] + bottom_right[0])/2., (top_left[1] + bottom_right[1])/2.] |
| 110 | + |
| 111 | + if params["model"] == 1: |
| 112 | + # use initial velocity |
| 113 | + mean_state_a_priori[0, 2:4] = params["initial_velocity"] |
| 114 | + |
| 115 | + # Initialize Particles |
| 116 | + particles = np.tile(mean_state_a_priori[0], (params["num_particles"], 1)) |
| 117 | + particles_w = np.ones([params["num_particles"], 1]) * 1./params["num_particles"] |
| 118 | + |
| 119 | + fig, ax = plt.subplots(1) |
| 120 | + im = ax.imshow(first_image) |
| 121 | + plt.ion() |
| 122 | + |
| 123 | + for i in range(last_frame - first_frame + 1): |
| 124 | + t = i + first_frame |
| 125 | + |
| 126 | + # Propagate particles |
| 127 | + # === Implement function propagate() === |
| 128 | + particles = propagate(particles, frame_height, frame_width, params) |
| 129 | + # ====================================== |
| 130 | + |
| 131 | + # Estimate |
| 132 | + # === Implement function estimate() === |
| 133 | + mean_state_a_priori[i, :] = estimate(particles, particles_w) |
| 134 | + # ====================================== |
| 135 | + |
| 136 | + # Get frame |
| 137 | + ret, frame = vidcap.read() |
| 138 | + frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
| 139 | + |
| 140 | + # Draw |
| 141 | + if params["draw_plots"]: |
| 142 | + ax.set_title("Frame: %d" % t) |
| 143 | + im.set_data(frame) |
| 144 | + to_remove = [] |
| 145 | + |
| 146 | + # Plot a priori particles |
| 147 | + new_plot = ax.scatter(particles[:, 0], particles[:, 1], color='blue', s=2) |
| 148 | + to_remove.append(new_plot) |
| 149 | + |
| 150 | + # Plot a priori estimation |
| 151 | + for j in range(i-1, -1, -1): |
| 152 | + lwidth = 30 - 3 * (i-j) |
| 153 | + if lwidth > 0: |
| 154 | + new_plot = ax.scatter(mean_state_a_priori[j+1, 0], mean_state_a_priori[j+1, 1], color='blue', s=lwidth) |
| 155 | + to_remove.append(new_plot) |
| 156 | + if j != i: |
| 157 | + new_plot = ax.plot([mean_state_a_priori[j, 0], mean_state_a_priori[j+1, 0]], |
| 158 | + [mean_state_a_priori[j, 1], mean_state_a_priori[j+1, 1]], color='blue') |
| 159 | + to_remove.append(new_plot[0]) |
| 160 | + |
| 161 | + # Plot a priori bounding box |
| 162 | + if not np.any(np.isnan(mean_state_a_priori[i, :])): |
| 163 | + patch = ax.add_patch(patches.Rectangle((mean_state_a_priori[i, 0] - 0.5 * bbox_width, mean_state_a_priori[i, 1] - 0.5 * bbox_height), |
| 164 | + bbox_width, bbox_height, fill=False, edgecolor='blue', lw=2)) |
| 165 | + to_remove.append(patch) |
| 166 | + |
| 167 | + # Observe |
| 168 | + # === Implement function observe() === |
| 169 | + particles_w = observe(particles, frame, bbox_height, bbox_width, params["hist_bin"], hist, params["sigma_observe"]) |
| 170 | + # ==================================== |
| 171 | + |
| 172 | + # Update estimation |
| 173 | + mean_state_a_posteriori[i, :] = estimate(particles, particles_w) |
| 174 | + |
| 175 | + # Update histogram color model |
| 176 | + hist_crrent = color_histogram(min(max(0, round(mean_state_a_posteriori[i, 0]-0.5*bbox_width)), frame_width-1), |
| 177 | + min(max(0, round(mean_state_a_posteriori[i, 1]-0.5*bbox_height)), frame_height-1), |
| 178 | + min(max(0, round(mean_state_a_posteriori[i, 0]+0.5*bbox_width)), frame_width-1), |
| 179 | + min(max(0, round(mean_state_a_posteriori[i, 1]+0.5*bbox_height)), frame_height-1), |
| 180 | + frame, params["hist_bin"]) |
| 181 | + |
| 182 | + hist = (1 - params["alpha"]) * hist + params["alpha"] * hist_crrent |
| 183 | + |
| 184 | + if params["draw_plots"]: |
| 185 | + # Plot updated estimation |
| 186 | + for j in range(i-1, -1, -1): |
| 187 | + lwidth = 30 - 3 * (i-j) |
| 188 | + if lwidth > 0: |
| 189 | + new_plot = ax.scatter(mean_state_a_posteriori[j+1, 0], mean_state_a_posteriori[j+1, 1], color='red', s=lwidth) |
| 190 | + to_remove.append(new_plot) |
| 191 | + if j != i: |
| 192 | + new_plot = ax.plot([mean_state_a_posteriori[j, 0], mean_state_a_posteriori[j+1, 0]], |
| 193 | + [mean_state_a_posteriori[j, 1], mean_state_a_posteriori[j+1, 1]], color='red') |
| 194 | + to_remove.append(new_plot[0]) |
| 195 | + |
| 196 | + # Plot updated bounding box |
| 197 | + if not np.any(np.isnan(mean_state_a_posteriori[i, :])): |
| 198 | + patch = ax.add_patch(patches.Rectangle((mean_state_a_posteriori[i, 0] - 0.5 * bbox_width, mean_state_a_posteriori[i, 1] - 0.5 * bbox_height), |
| 199 | + bbox_width, bbox_height, fill=False, edgecolor='red', lw=2)) |
| 200 | + to_remove.append(patch) |
| 201 | + |
| 202 | + |
| 203 | + # RESAMPLE PARTICLES |
| 204 | + # === Implement function resample() === |
| 205 | + particles, particles_w = resample(particles, particles_w) |
| 206 | + # ===================================== |
| 207 | + |
| 208 | + if params["draw_plots"] and t != last_frame: |
| 209 | + |
| 210 | + plt.pause(0.2) |
| 211 | + if t == 28: |
| 212 | + plt.savefig(params["save_dir"] + "_frame_%d.png" % t) # Save frame |
| 213 | + # plt.savefig(params["save_dir"] + "frame_%d.png" % t) # Save frame |
| 214 | + # Remove previous element from plot |
| 215 | + for e in to_remove: |
| 216 | + e.remove() |
| 217 | + |
| 218 | + plt.ioff() |
| 219 | + plt.show() |
| 220 | + |
| 221 | + |
| 222 | +if __name__ == "__main__": |
| 223 | + video_name = 'video3.avi' |
| 224 | + params = { |
| 225 | + "save_dir": "./results/vid3_", |
| 226 | + "draw_plots": 1, |
| 227 | + "hist_bin": 16, |
| 228 | + "alpha": 0.8, |
| 229 | + "sigma_observe": 0.1, |
| 230 | + "model": 1, |
| 231 | + "num_particles": 300, |
| 232 | + "sigma_position": 7, |
| 233 | + "sigma_velocity": 1, |
| 234 | + "initial_velocity": (1, 10) |
| 235 | + } |
| 236 | + params["save_dir"] = params["save_dir"] + f"alpha{params['alpha']}_histbin{params['hist_bin']}_numparticles{params['num_particles']}" |
| 237 | + # if not os.path.exists(params["save_dir"]): |
| 238 | + # os.makedirs(params["save_dir"]) |
| 239 | + condensation_tracker(video_name, params) |
0 commit comments