-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpredict.cpp
194 lines (177 loc) · 5.39 KB
/
predict.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#include "predict.h"
#include <iostream>
#include <fstream>
#include <math.h>
#include <string>
#include <vector>
using namespace std;
// error for missing implementation of activation function
// you can add your activation implementation in compute_output if required
void missing_activation_impl(const string &activation) {
cout << "Activation " << activation << " not defined!" << endl;
cout << "Please add its implementation before use." << endl;
exit(1);
}
vector<float> read_input_from_file(const string &fname) {
ifstream fin(fname.c_str());
int n_features;
fin >> n_features;
vector<float> input_data(n_features);
for (unsigned i = 0; i < n_features; i++) {
fin >> input_data[i];
}
return input_data;
}
int read_response_from_file(const string &fname) {
ifstream fin(fname.c_str());
int n_features;
fin >> n_features;
float tmp_float;
for (unsigned i = 0; i < n_features; i++) {
fin >> tmp_float;
}
int response;
fin >> response;
return response;
}
// KerasModel constructor
KerasModel::KerasModel(string &input_fname) {
load_weights(input_fname);
}
// KerasModel destructor
KerasModel::~KerasModel() {
for (unsigned int i = 0; i < layers.size(); i++) {
delete layers[i]; // deallocate memory
}
}
// load weights for all layers
void KerasModel::load_weights(string &input_fname) {
cout << "Reading weights from file " << input_fname << endl;
ifstream fin(input_fname.c_str(),ifstream::in);
string tmp_str = "";
string layer_type = "";
int layer_id = 0;
if(fin.is_open()) {
// get layers count in layers_count var
fin >> tmp_str >> layers_count;
// Now iterate over each layer
for (unsigned int layer_index = 0; layer_index < layers_count; ++layer_index) {
fin >> tmp_str >> layer_id >> layer_type;
// pointer to layer
Layer *layer = 0L;
if (layer_type == "Dense") {
layer = new LayerDense();
}
else if(layer_type == "Activation") {
layer = new LayerActivation();
}
// if none of above case is true, means layer not-defined
if(layer == 0L) {
cout << "Layer is empty, maybe layer " << layer_type << " is not defined? Cannot define network." << endl;
return;
}
layer->load_weights(fin);
layers.push_back(layer);
}
}
fin.close();
}
vector<float> KerasModel::compute_output(vector<float> test_input) {
// cout << "KreasModel compute output" << endl;
vector<float> response;
for (unsigned int i = 0; i < layers_count; i++) {
// cout << "Processing layer to compute output " << layers[i]->layer_name << endl;
response = layers[i]->compute_output(test_input);
test_input = response;
}
return response;
}
// load weights and bias from input file for Dense layer
void LayerDense::load_weights(ifstream &fin) {
// cout << "Loading weights for Dense layer" << endl;
fin >> input_node_count >> output_weights;
float tmp_float;
// read weights for all the input nodes
char tmp_char = ' ';
for (unsigned int i = 0; i < input_node_count; i++) {
fin >> tmp_char; // for '['
vector<float> tmp_weights;
for (unsigned int j = 0; j < output_weights; j++) {
fin >> tmp_float;
tmp_weights.push_back(tmp_float);
}
fin >> tmp_char; // for ']'
layer_weights.push_back(tmp_weights);
}
// read and save bias values
fin >> tmp_char; // for '['
for (unsigned int output_node_index = 0; output_node_index < output_weights; output_node_index++) {
fin >> tmp_float;
bias.push_back(tmp_float);
}
fin >> tmp_char; // for ']'
}
void LayerActivation::load_weights(ifstream &fin) {
// cout << "Loading weights for Activation layer" << endl;
fin >> activation_type;
}
vector<float> LayerDense::compute_output(vector<float> test_input) {
// cout << "Inside dense layer compute output" << '\n';
// cout << "weights: input size " << layer_weights.size() << endl;
// cout << "weights: neurons size " << layer_weights[0].size() << endl;
// cout << "bias size " << bias.size() << endl;
vector<float> out(output_weights);
float weighted_term = 0;
for (size_t i = 0; i < output_weights; i++) {
weighted_term = 0;
for (size_t j = 0; j < input_node_count; j++) {
weighted_term += (test_input[j] * layer_weights[j][i]);
}
out[i] = weighted_term + bias[i];
}
return out;
}
vector<float> LayerActivation::compute_output(vector<float> test_input) {
if (activation_type == "linear") {
return test_input;
}
else if(activation_type == "relu") {
for (unsigned int i = 0; i < test_input.size(); i++) {
if(test_input[i] < 0) {
test_input[i] = 0;
}
}
}
else if(activation_type == "softmax") {
float sum = 0.0;
for(unsigned int k = 0; k < test_input.size(); ++k) {
test_input[k] = exp(test_input[k]);
sum += test_input[k];
}
for(unsigned int k = 0; k < test_input.size(); ++k) {
test_input[k] /= sum;
}
}
else if (activation_type == "sigmoid") {
float denominator = 0.0;
for(unsigned int k = 0; k < test_input.size(); ++k) {
denominator = 1 + exp(-(test_input[k]));
test_input[k] = 1/denominator;
}
}
else if(activation_type == "softplus") {
for (unsigned int k = 0; k < test_input.size(); ++k) {
// log1p = natural logarithm (to base e) of 1 plus the given number (ln(1+x))
test_input[k] = log1p(exp(test_input[k]));
}
}
else if(activation_type == "softsign") {
for (unsigned int k = 0; k < test_input.size(); ++k) {
test_input[k] = test_input[k]/(1+abs(test_input[k]));
}
}
else {
missing_activation_impl(activation_type);
}
return test_input;
}