forked from wspr/hatze-biomech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegment_abdomino_thoracic.m
executable file
·210 lines (160 loc) · 6.23 KB
/
segment_abdomino_thoracic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
function person = segment_abdomino_thoracic(person,S)
%% abdomino-thoracic
person.segment(S).origin = person.q(1:3);
O1 = person.segment(S).origin + person.segment(S).offset;
i_m = person.sex;
PI = person.const.pi;
N = 10; % number of disks
Nt = 7; % number of disks for thoracic region
% Indices for thoracic and abdominal (resp.) groups of disks:
indt = 1:Nt;
inda = (Nt+1):N;
% Measurements and variables:
a = nan(1,N);
b = nan(1,N);
w = nan(1,N);
% coefficients for lungs calcs: (how to generalise?)
c = nan(1,Nt);
c(1:2) = 0.8333;
c(3:6) = 0.2;
c(7) = 0.4111;
% Densities:
gamma_t = person.density.thoracic_wall(i_m);
gamma_a = person.density.abdomen(i_m);
gamma_l = person.density.lungs(i_m);
gamma_b = person.density.breasts(i_m); % (? see A2.94, gamma_b for legs = 1200)
%% Measurements
l = person.meas{S}.length;
d_11 = person.meas{11}.all(19); % AP distance between centre of hip joint & Symphysion
z_h = mean([person.meas{3}.all(4), person.meas{7}.all(4)]); % height between shoulder and O1
d = person.meas{S}.all(08); % nipple-to-nipple distance
r = person.meas{S}.all(09)/2; % radius of breast
h = person.meas{S}.all(21); % height below C5 of nipple
% thorax ML widths (7) and AP thicknesses (10)
X1 = person.meas{S}.widths;
Y1 = person.meas{S}.depths;
%% Implicit measurements
RR = person.segment(S).Rglobal;
person.segment(S+1).origin = O1+person.segment(S).Rlocal*[0;0;l];
g = (1+0.3*i_m)*d_11;
% symmetric chest until the end of the lungs:
w(indt) = Y1(indt)/2; % in Hatze's code w(indt) is set to 0
b(indt) = Y1(indt)/2;
% interpolate width minus shoulder; implies 10 disks:
a([1, 5:10]) = X1([1, 5:10])/2;
a(4) = a(5);
ii = [2, 3];
a(ii) = a(5)+(0.42*a(5)-a(1)).*l/N*(4-ii)/(0.35*l-z_h)+...
(2*a(1)-1.42*a(5))*((l./N*(4-ii))/(0.35*l-z_h)).^2;
%male or female
jj = floor(h/(l/N)); % Integer Conversion != Rounding
if h==0
b_j = 0;
else
b_j = b(jj);
end
% interpolate asymmetric belly thicknesses:
w(inda) = interp1([Nt N],[Y1(Nt)/2 g],inda);
b(inda) = Y1(inda) - w(inda);
person.segment(S).a = a;
person.segment(S).b = b;
% Lungs:
a2 = a(indt).*(c(1)-c(indt));
b2 = (b(indt)-a(indt)/6).*sqrt(1-(c(indt)./c(1)).^2);
%% Calculations
v_e = PI*a(indt).*b(indt)*l/N; % volume of each thoracic disk
v_p = 8/3*a2.*b2*l/N; % volume of lungs in each disk
m_e = gamma_t*v_e; % mass of thorax as if it were solid
m_p = (gamma_t-gamma_l)*v_p; % mass difference between thorax & lungs
m_t = (v_e-v_p)*gamma_t; % mass of thoracic volume without lungs
m_g = v_p*gamma_l; % mass of lungs only
%m_t+m_g=m_e-m_p
v_1 = PI*a(inda).*w(inda)*l/2/N;
v_2 = PI*a(inda).*b(inda)*l/2/N;
m_1 = gamma_a*v_1;
m_2 = gamma_a*v_2;
v_f = (1-i_m)*4/3*PI*r^3; % breasts (2 hemispheres)
m_f = gamma_b*v_f;
volume = sum(v_e)+sum(v_1+v_2)+v_f;
mass = sum(m_t+m_g)+sum(m_1+m_2)+m_f;
% Mass centroid (w.r.t original segment axes)
xc = 0;
yc = ( ...
sum( ((m_1+m_2).*0.424.*(b(inda).^2-w(inda).^2))./(b(inda)+w(inda)))... %= sum(a(inda).*(b(inda).^2-w(inda).^2).*gamma_a*l/N*PI*0.212 ...
+ m_f*(b_j+3/8*r) ...
)/mass;
zc = ( ...
sum( (m_t+m_g).*(21-2*indt)*l/2/N ) ...
+ sum( (m_1+m_2).*(21-2*inda)*l/2/N ) ...
+ m_f*(l-h) ...
)/mass;
% Moments of inertia w.r.t centroid
s = l^2/1200;
I_x = m_e.*((b(indt).^2)/4 +s) ...
- m_p.*((b2(indt).^2)/5+s) ...
+ (m_e-m_p).*(yc^2+(l*(21-2*indt)/20-zc).^2);
I2_x = sum(I_x) ...
+ sum(...
m_1.*(0.07*w(inda).^2+s+(-0.424*w(inda)-yc).^2+(l*(21-2*inda)./20-zc).^2) ...
+ m_2.*(0.07*b(inda).^2+s+(+0.424*b(inda)-yc).^2+(l*(21-2*inda)./20-zc).^2) ...
) ...
+ m_f*(0.2594*r^2+(l-h-zc)^2+(b_j+3*r/8-yc)^2);
Ip_x = I2_x;
I_y = m_e.*((a(indt).^2)/4+s) ... %error in Hatze (1979)A2.31: does not include division by 4 of a_i^2
- m_p.*(0.06857*a2(indt).^2+s+(c(indt).*a(indt)+0.4*a2(indt)).^2) ...
+ (m_e-m_p).*(l*(21-2*indt)/20-zc).^2;
I2_y = sum(I_y)...
+ sum((m_1+m_2).*((a(inda).^2)/4+s+(l*(21-2*inda)./20-zc).^2)) ...
+ m_f*(0.4*r^2+(l-h-zc)^2+(d/2)^2);
I_z = m_e.*(a(indt).^2+b(indt).^2)/4 ...
- m_p.*(0.06857*a2.^2+(b2.^2)/5+(c(indt).*a(indt)+0.4*a2(indt)).^2) ...
+ (m_e-m_p).*yc^2;
I2_z = sum(I_z) + sum( ...
m_1.*(0.07*w(inda).^2+(a(inda).^2)/4+(-0.424*w(inda)-yc).^2) ...
+ m_2.*(0.07*b(inda).^2+(a(inda).^2)/4+(0.424*b(inda)-yc).^2) ...
) + m_f*(0.2594*r^2+(b_j+3*r/8-yc).^2+(d/2)^2);
I_yz = sum((m_e-m_p).*(-yc).*(l*(21-2*indt)/20-zc));
I2_yz = sum(I_yz) + sum((l*(21-2*inda)./20-zc).*(...
m_1.*(-0.424*w(inda)-yc) + m_2.*(+0.424*b(inda)-yc))...
) + m_f*(b_j+3*r/8-yc)*(l-h-zc);
Ip_y = (I2_y+I2_z)/2+sqrt(1/4*(I2_y-I2_z)^2+I2_yz^2);
Ip_z = (I2_y+I2_z)/2-sqrt(1/4*(I2_y-I2_z)^2+I2_yz^2);
theta = atan(I2_yz/(I2_z-Ip_y));
%centroid w.r.t local coordinate systems (since principal axes differ from
%original segment axes)
xbc=xc;
ybc=yc*cos(theta)+zc*sin(theta);
zbc=zc*cos(theta)-yc*sin(theta);
%principal moments of inertia w.r.t local systems origin
PIOX=Ip_x+mass*(ybc^2+zbc^2);
PIOY=Ip_y+mass*zbc^2;
PIOZ=Ip_z+mass*ybc^2;
person.segment(S).mass = mass;
person.segment(S).volume = volume;
person.segment(S).centroid = [xc; yc; zc];
person.segment(S).theta = theta;
person.segment(S).Minertia = [Ip_x,Ip_y,Ip_z];
%% Plot
if person.plot || person.segment(S).plot
opt = {'opacity',person.segment(S).opacity(1),'edgeopacity',person.segment(S).opacity(2),'colour',person.segment(S).colour};
optl = {'opacity',min(1,2*person.segment(S).opacity(1)),'edgeopacity',person.segment(S).opacity(2),'colour',person.segment(S).colour};
% thorax:
for ii = indt
ph = l-ii*l/N; % plate height
plot_elliptic_plate(O1+RR*[0;0;ph],[a(ii) b(ii)],l/N,opt{:},'rotate',RR);
% lungs:
plot_parabolic_plate(O1+RR*[ c(ii)*a(ii);0;ph],[ a2(ii) b2(ii)],l/N,optl{:});
plot_parabolic_plate(O1+RR*[-c(ii)*a(ii);0;ph],[-a2(ii) b2(ii)],l/N,optl{:});
end
% abdomen:
for ii = inda
ph = l-ii*l/N; % plate height
plot_elliptic_plate(O1+RR*[0;0;ph],[a(ii) -w(ii)],l/N,'segment',[0 0.5],opt{:},'rotate',RR)
plot_elliptic_plate(O1+RR*[0;0;ph],[a(ii) b(ii)],l/N,'segment',[0 0.5],opt{:},'rotate',RR)
end
% breasts:
if i_m == 0 % female
plot_sphere(O1+RR*[+d/2; b(jj); l-h],r,'latrange',[-1 1],'N',[20 10],opt{:})
plot_sphere(O1+RR*[-d/2; b(jj); l-h],r,'latrange',[-1 1],'N',[20 10],opt{:})
end
end