-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsam_finetune.py
132 lines (105 loc) · 5.14 KB
/
sam_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# finetune the sam model on the visha dataset
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '7'
import cv2
import json
import random
from tqdm import tqdm
from statistics import mean
import torch
import numpy as np
from sam import sam_model_registry
from sam.utils.transforms import ResizeLongestSide
def get_training_files(path):
videolists = sorted(os.listdir(os.path.join(path, "images")))
img_all = []
for video in videolists:
v_path = os.path.join(path, "images", video)
imglist = sorted(os.listdir(v_path)) # all frames of current video
img_all = img_all + [os.path.join(v_path, img) for img in imglist]
return img_all # a list of all image paths
def main():
sam_checkpoint = "./checkpoints/sam_vit_b_01ec64.pth"
model_type = "vit_b"
device = "cuda"
training_path = "/data/wangyh/data4/Datasets/shadow/video_new/visha4/train"
sam_model = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam_model.to(device=device)
sam_model.train()
print("Params: {}M".format(sum(p.numel() for p in sam_model.mask_decoder.parameters())/1e6))
# set the optimizer and loss
lr = 1e-4
optimizer = torch.optim.Adam(sam_model.mask_decoder.parameters(), lr=lr, weight_decay=0)
# loss_fn = torch.nn.MSELoss()
loss_fn = torch.nn.BCEWithLogitsLoss()
# load bounding boxes
f = open("./dataset/sam_train.json", "r")
content = f.read()
meta = json.loads(content)
# get the training files
img_all = get_training_files(training_path)
# start training!!!
num_epochs = 10
for epoch in range(num_epochs):
epoch_losses = []
random.shuffle(img_all) # random shuffle the training files
lab_all = [p.replace("images", "labels").replace(".jpg", ".png") for p in img_all]
img_all_pbar = tqdm(img_all)
for i, img_path in enumerate(img_all_pbar):
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
label = cv2.imread(lab_all[i])
label = cv2.cvtColor(label, cv2.COLOR_BGR2GRAY)
# transform
sam_trans = ResizeLongestSide(sam_model.image_encoder.img_size) # 1024
resize_image = sam_trans.apply_image(image) # padding to 1024 * 1024
image_tensor = torch.as_tensor(resize_image, device=device)
input_image_torch = image_tensor.permute(2, 0, 1).contiguous()[None, :, :, :]
input_image = sam_model.preprocess(input_image_torch)
original_image_size = image.shape[:2]
input_size = tuple(input_image_torch.shape[-2:])
video_name = img_path.split('/')[-2]
file_name = img_path.split('/')[-1].replace("jpg", "png")
bboxes = meta[video_name][file_name]['bbox']
bboxes = np.array(bboxes)
with torch.no_grad():
box = sam_trans.apply_boxes(bboxes, (original_image_size))
box_torch = torch.as_tensor(box, dtype=torch.float, device=device)
if len(box_torch.shape) == 2:
box_torch = box_torch[:, None, :] # (B, 1, 4)
image_embedding = sam_model.image_encoder(input_image)
sparse_embeddings, dense_embeddings = sam_model.prompt_encoder(
points=None,
boxes=box_torch,
masks=None,
)
low_res_masks, iou_predictions = sam_model.mask_decoder(
image_embeddings=image_embedding,
image_pe=sam_model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
)
low_res_masks = torch.sum(low_res_masks, dim=0, keepdim=True)
upscaled_masks = sam_model.postprocess_masks(low_res_masks, input_size, original_image_size).to(device)
gt_mask_resized = torch.from_numpy(np.resize(label, (1, 1, label.shape[0], label.shape[1]))).to(device)
gt_binary_mask = torch.as_tensor(gt_mask_resized > 0, dtype=torch.float32)
loss = loss_fn(upscaled_masks, gt_binary_mask)
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_losses.append(loss.item())
if i % 100 == 0:
img_all_pbar.set_postfix(loss=mean(epoch_losses))
image_save = cv2.imread(img_path)
image_save = cv2.cvtColor(image_save, cv2.COLOR_BGR2RGB)
# image_save = cv2.resize(image_save, (256, 256))
mask_save = (upscaled_masks>0.5)[0].detach().squeeze(0).cpu().numpy()
mask_save = np.array(mask_save * 255).astype(np.uint8)
mask_save = np.tile(mask_save[:,:,np.newaxis], 3)
_save = np.concatenate((image_save, mask_save), axis=1)
cv2.imwrite("./img_logs_sam/{}_{}.jpg".format(epoch, i), _save)
print(f'EPOCH: {epoch} Mean loss: {mean(epoch_losses)}')
torch.save(sam_model.state_dict(), f"./checkpoints/chk_sam/{epoch}.pth")
if __name__ == '__main__':
main()