You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I tried to run your re-implementation of domain adaptive faster rcnn in adaptation from pascal voc to clipart, and I found it reached much better mAP (30 mAP) than the value reported in paper "stong weak distribution alignment" paper. (19.8 mAP)
May I ask what's your opinion on this? Why is your re-implementation much better? Or did I probably ignore some details in training script and misuse them? (I used your trainval_net_dfrcnn.py, and didn't use any rendered datasets).
Thanks a lot for any possible help in advance!
Best,
Anton
The text was updated successfully, but these errors were encountered:
Hi Zhiqiang,
I tried to run your re-implementation of domain adaptive faster rcnn in adaptation from pascal voc to clipart, and I found it reached much better mAP (30 mAP) than the value reported in paper "stong weak distribution alignment" paper. (19.8 mAP)
May I ask what's your opinion on this? Why is your re-implementation much better? Or did I probably ignore some details in training script and misuse them? (I used your trainval_net_dfrcnn.py, and didn't use any rendered datasets).
Thanks a lot for any possible help in advance!
Best,
Anton
The text was updated successfully, but these errors were encountered: