-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathparameters_selection.py
175 lines (113 loc) · 4 KB
/
parameters_selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
### This is run when you want to select the parameters from the parameters file
from sklearn.model_selection import ParameterGrid
import json
params_data={
'include_special':False, #True is want to include <url> in place of urls if False will be removed
'bert_tokens':False, #True /False
'type_attention':'softmax', #softmax
'set_decay':0.1,
'majority':2,
'max_length':128,
'variance':5,
'window':4,
'alpha':0.5,
'p_value':0.8,
'method':'additive',
'decay':False,
'normalized':False,
'not_recollect':True,
}
#"birnn","birnnatt","birnnscrat","cnn_gru"
common_hp={
'is_model':True,
'logging':'neptune', ###neptune /local
'learning_rate':2e-5, ### learning rate 2e-5 for bert 0.001 for gru
'epsilon':1e-8,
'batch_size':32,
'to_save':True,
'epochs':20,
'auto_weights':True,
'weights':[1.0,1.0,1.0],
'model_name':'birnn',
'random_seed':42,
'max_length':128,
'num_classes':3,
'att_lambda':1,
'device':'cuda',
'train_att':True
}
params_bert={
'path_files':'bert-base-uncased',
'what_bert':'weighted',
'save_only_bert':False,
'supervised_layer_pos':11,
'num_supervised_heads':1,
'dropout_bert':0.1
}
params_other = {
"vocab_size": 0,
"padding_idx": 0,
"hidden_size":64,
"embed_size":0,
"embeddings":None,
"drop_fc":0.2,
"drop_embed":0.2,
"drop_hidden":0.1,
"train_embed":False,
"seq_model":"gru",
"attention":"softmax"
}
if(params_data['bert_tokens']):
for key in params_other:
params_other[key]='N/A'
else:
for key in params_bert:
params_bert[key]='N/A'
def Merge(dict1, dict2,dict3, dict4):
res = {**dict1, **dict2,**dict3, **dict4}
return res
params = Merge(params_data,common_hp,params_bert,params_other)
if __name__=='__main__':
params_list = []
params_new = {}
for key in params.keys():
params_new[key]=[params[key]]
params_new['model_name']=["birnnscrat"]
params_new['learning_rate']=[0.1,0.01,0.001]
params_new['hidden_size']=[64,128]
params_new['drop_embed'] = [0.1,0.2,0.5]
params_new['drop_fc'] = [0.1,0.2,0.5]
params_new['att_lambda']=[0.001,0.01,0.1,1,10,100]
#params_new['drop_hidden'] = [0.1,0.2,0.5]
params_new['seq_model']=['lstm','gru']
params_new['train_embed']=[True,False]
params_list=list(ParameterGrid(params_new))
print('Total experiments to be done:',len(params_list))
with open('all_params_scrat.json', 'w') as fout:
json.dump(params_list ,fout,indent=4)
# for train_att in [True,False]:
# print(train_att)
# params['train_att']=train_att
# if(train_att):
# for supervised_layer_pos in range(10,12):
# params['supervised_layer_pos'] = supervised_layer_pos
# for num_supervised_heads in range(10,12):
# params['num_supervised_heads']= num_supervised_heads
# for att_lambda in [0.01,0.1,1,10,100]:
# params['att_lambda']=att_lambda
# for dropout_bert in [0.1,0.5]:
# params['dropout_bert']=dropout_bert
# for auto_weights in [True,False]:
# params['auto_weights']=auto_weights
# for learning_rate in [2e-5]:
# params['learning_rate']=learning_rate
# params_list.append(params.copy())
# else:
# for dropout_bert in [0.1,0.5]:
# params['dropout_bert']=dropout_bert
# for auto_weights in [True,False]:
# params['auto_weights']=auto_weights
# for learning_rate in [2e-5]:
# params['learning_rate']=learning_rate
# params_list.append(params.copy())
# #