-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdcmtools.py
415 lines (340 loc) · 13.5 KB
/
dcmtools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#!/usr/bin/env python3
"""DCMTools for loading (compressed) DICOM studies and series.
This module provides various methods to load compressed archives or
a single directory, which can contain (multiple) DICOM studies / series.
"""
from __future__ import print_function
import tarfile
import os
import time
try:
# Python 2 compatibility
from StringIO import StringIO as IOBuffer
except ImportError:
from io import BytesIO as IOBuffer
import pydicom
import numpy as np
import scipy.ndimage.interpolation
def peek_study(path):
"""Peeks the `StudyInstanceUID` of a DICOM directory, that is,
reads the first DICOM file in that directory and returns
the associated ID.
Args:
path (str): The directory which contains at least one DICOM file.
Returns:
str or None: The StudyInstanceUID if possible, None otherwise.
"""
dcm = None
for s in os.listdir(path):
try:
dcm = pydicom.read_file(path + '/' + s)
break
except:
continue
if dcm is not None:
return dcm.StudyInstanceUID
return None
def peek_compressed_study(archive_path):
"""Peeks the `StudyInstanceUID` of a compressed DICOM archive, that is,
reads the first DICOM file in the archive and returns the associated ID.
Args:
archive_path (str): The filepath of the archive.
Returns:
str or None: The StudyInstanceUID if possible, None otherwise.
"""
mode = ''
if archive_path.lower().endswith('.gz') or archive_path.lower().endswith('.tgz'):
mode = 'r:gz'
elif archive_path.lower().endswith('.bz2') or archive_path.lower().endswith('.tbz'):
mode = 'r:bz2'
try:
tar_archive = tarfile.open(archive_path, mode)
except:
return None
dcm = None
while True:
tarinfo = tar_archive.next()
if tarinfo is None:
break
if tarinfo.isfile():
file_object = tar_archive.extractfile(tarinfo)
file_like_object = IOBuffer(file_object.read())
file_object.close()
file_like_object.seek(0)
try:
dcm = pydicom.read_file(file_like_object)
except:
continue
break
if dcm is not None:
return dcm.StudyInstanceUID
return None
def load_study(slices, debug=False):
"""Loads all DICOM files in the given list of filepaths
Args:
slices (list): The filepath of the archive.
debug (bool): To print debug information.
Returns:
study_uid: The StudyInstanceUID of the study.
clean_series: A list of all DICOM images.
"""
# remove sr and annotation files
# only kep image files
clean_slices = []
for s in slices:
try:
# try to get the position, fails for SR files and other which have no image content
ipp = s.ImagePositionPatient[2]
clean_slices.append(s)
except:
if debug:
print("Removing slice PatientID:{}; SOPClassUID:{}".format(s.PatientID, s.SOPClassUID))
slices = clean_slices
del clean_slices # free some memory
# find all series in this DICOM directory
slices.sort(key=lambda x: x.SeriesInstanceUID)
current = None
cidx = -1
series = []
for s in slices:
if not current == s.SeriesInstanceUID:
current = s.SeriesInstanceUID
cidx += 1
series.append([])
series[cidx].append(s)
# sort every series by z coordinate
for s in series:
s.sort(key=lambda x: float(x.ImagePositionPatient[2]))
study_uid = None
clean_series = []
# let's print some information about the series
clean_idx = 0
for idx, series_no in enumerate(series):
img = series_no[0]
if len(series_no) > 1:
snd = series_no[1]
thickness_x = img.PixelSpacing[0]
thickness_y = img.PixelSpacing[1]
thickness_z = np.abs(img.ImagePositionPatient[2] - snd.ImagePositionPatient[2])
else:
# continue of only one slice in series
continue
# continue if slices have no thickness
if np.max([thickness_x, thickness_y, thickness_z]) <= 0.0:
continue
# try:
# img.SpacingBetweenSlices
# except:
# # continue if there is no spacing
# continue
image_types = img.ImageType
if not image_types[0] == 'ORIGINAL' and image_types[1] == 'PRIMARY':
# is the image an ORIGINAL Image; an image whose pixel values are based on original or source data
# is the image a PRIMARY Image; an image created as a direct result of the Patient examination
continue
for slice_no in series_no:
slice_no.SliceThicknessX = thickness_x
slice_no.SliceThicknessY = thickness_y
slice_no.SliceThicknessZ = thickness_z
# series is fine, use it!
clean_series.append(series_no)
clean_idx += 1
if study_uid != img.StudyInstanceUID and study_uid is not None:
if debug:
print("Warning: Found multiple Study Instance UIDs in directory!")
if study_uid is None:
study_uid = img.StudyInstanceUID
return study_uid, clean_series
def clip_voxel_values(slices):
"""Clips the values of the given list of DICOM images to be in range [0,1),
that is, the values are scaled to be in range [0,1), all values below 0 are clipped to 0
and all values above 1 are clipped to 1.
The result is returned as a float array.
Args:
slices (list): A list of DICOM images.
Returns:
slices (numpy.array): The convertes images as a numpy array
spacing (numpy.array): The spacing of a single slice
"""
image = np.stack([s.pixel_array for s in slices])
# Convert to float32 (from sometimes int16),
# should be possible as values should always be low enough (<32k)
image = image.astype(np.float32)
# Convert to Hounsfield units (HU)
# Apply linear transformation from disk rep to memory rep
# See https://stackoverflow.com/questions/10193971/rescale-slope-and-rescale-intercept
# And https://stackoverflow.com/questions/8756096/window-width-and-center-calculation-of-dicom-image/8765366#8765366
for idx, slice in enumerate(slices):
intercept = slice.RescaleIntercept
slope = slice.RescaleSlope
img = image[idx]
img[img < 0] = 0
img[img > 4095] = 4095
if slope != 1:
print("WARNING:", "DICOM RescaleSlope != 1", "We should probably do something here.")
# img = slope * slice.astype(np.float64)
# img = slice.astype(np.int16)
# memory rep is in [0,4096)
# so no need to shift data
# img += np.int16(intercept)
# divide with max value, so that values are in range [0,1)
img /= np.float32(4095)
image[idx] = img
im = slices[0]
return np.array(image, dtype=np.float32),\
np.array(
[im.SliceThicknessX, im.SliceThicknessY, im.SliceThicknessZ],
dtype=np.float32)
def resample_volume(vol, spacing, new_spacing, order=2):
"""Resample the given volume with the given spacing to the given new_spacing.
Args:
vol (numpy.array): The 3D volume as numpy array in `z` `x` `y`
spacing (numpy.array): The spacing of the 3D volume in `x` `y` `z`
new_spacing (numpy.array): The new spacing to resample the volume to in `x` `y` `z`
order (int): The order of the spline interpolation
Returns:
volume (numpy.array): The resampled 3D volume
spacing (numpy.array): The spacing of the resampled 3D volume in `x` `y` `z`
"""
# volume has order z x y, so roll things around
vol_shape = np.roll(vol.shape, -1)
new_shape = np.round(np.multiply(vol_shape, np.divide(spacing, new_spacing)))
true_spacing = np.multiply(spacing, np.divide(vol_shape, new_shape))
resize_factor = np.divide(new_shape, vol_shape)
vol = scipy.ndimage.interpolation.zoom(
vol, resize_factor, mode='nearest', order=order)
return vol, true_spacing
def decompress_case(archive_path, debug=False):
"""Decompress a archive in memory.
Args:
archive_path (str): The filepath of the archive
debug (bool): To print debug information
Returns:
slices (list): The list of decompressed files
"""
mode = ''
if archive_path.lower().endswith('.gz') or archive_path.lower().endswith('.tgz'):
mode = 'r:gz'
elif archive_path.lower().endswith('.bz2') or archive_path.lower().endswith('.tbz'):
mode = 'r:bz2'
tar_archive = tarfile.open(archive_path, mode)
slices = []
if debug:
print("Untar...")
start = time.time()
while True:
tarinfo = tar_archive.next()
if tarinfo is None:
break
if tarinfo.isfile():
file_object = tar_archive.extractfile(tarinfo)
file_like_object = IOBuffer(file_object.read())
file_object.close()
file_like_object.seek(0)
try:
dcm = pydicom.read_file(file_like_object)
slices.append(dcm)
except:
continue
end_untar = time.time()
if debug:
print("Untar time: {}".format(end_untar - start))
return slices
def load_case(path):
"""Loads all DICOM files in the given directory.
Args:
path (str): The filepath of the directory
Returns:
slices (list): The list of loaded DICOM files
"""
slices = []
for s in os.listdir(path):
try:
dcm = pydicom.read_file(path + '/' + s)
slices.append(dcm)
except:
continue
return slices
if __name__ == '__main__':
"""Example usage of DCMTools functions.
This method demonstrates the usage of the provided functions to peek and load
compressed ('gz', 'tgz', 'bz2', 'tbz') archives or decompressed DICOM files
in a directory.
Example:
See `--help` for more information on how to use this example:
$ python3 dcmtools.py --help
"""
import argparse
from pathlib import Path
parser = argparse.ArgumentParser(prog="DCMTools", description="Loads DICOM files from directories and archives.")
# need to be
parser.add_argument("input", help="input file")
parser.add_argument('--resolution', default=[1.0, 1.0, 1.0], nargs=3, metavar=('x', 'y', 'z'),
type=float, help='resampled resolution in x y z')
parser.add_argument("--output", type=str, help="save the output file")
parser.add_argument("--studyuid", type=str, help="filter by study uid")
parser.add_argument("--seriesuid", type=str, help="filter by series uid")
parser.add_argument("--debug", action='store_true',
default=False, help="print debug information")
args = parser.parse_args()
# print the usage
parser.print_usage()
# transform input variables
resolution = np.array(args.resolution)
p = Path(args.input)
archives = []
archive_suffixes = ['gz', 'tgz', 'bz2', 'tbz']
if p.is_dir():
# try to find a file with archive suffix in the folder
try:
archives = [item for sblst in [list(p.glob('*.' + sffx)) for sffx in archive_suffixes] for item in sblst]
except:
pass
# check if input file is already a compressed archive
if p.exists() and not p.is_dir():
# it's a file!
if p.suffix[1:] in archive_suffixes:
archives.append(p)
# peek all study id's
for idx, arch in enumerate(archives):
arch_path = str(arch)
print("Found a *.tbz archive:", arch_path)
study_uid = peek_compressed_study(arch_path)
print("StudyInstanceUID: {}".format(study_uid))
# if at least one file is found,
# we can decompress it and get suid and slice count
if len(archives):
arch_path = str(archives[0])
print("Found a *.tbz archive:", arch_path)
study_uid = peek_compressed_study(arch_path)
print("StudyInstanceUID: {}".format(study_uid))
dcm_slices = decompress_case(arch_path)
print("Decompressed file {} with {} slices.".format(arch_path, len(dcm_slices)))
exit(0)
# no compressed archives found
# so proved input must be a directory to decompressed files
case_path = str(p)
print("Found DICOM directory:", case_path)
# peek directory to get study id
study_uid = peek_study(case_path)
print("StudyInstanceUID: {}".format(study_uid))
dcm_slices = load_case(case_path)
study_uid, clean_series = load_study(dcm_slices)
print("Found {} series with study uid ({}) in directory '{}':".format(len(clean_series), study_uid, case_path))
series = None
for series in clean_series:
img = series[0]
print("{} {} ({}): Dimension ({}/{}/{}) Thickness ({}/{}/{}:{}) ImageType ({}) SOPClassUID ({})".format(
img.SeriesInstanceUID, img.StudyDescription, img.SeriesDescription,
img.Rows, img.Columns, len(series),
img.SliceThicknessX, img.SliceThicknessY, img.SliceThicknessZ,
img.SpacingBetweenSlices,
img.ImageType, img.SOPClassUID
))
if series:
print("Load last seen series...")
# untouched voxel values
case_voxels, spacing = clip_voxel_values(series)
# resampled
resampled, data_spacing = resample_volume(case_voxels, spacing, resolution, order=1)
print("Done!")